用Python实现:SVM算法,采用sklearn库实现Mnist手写数字识别机器学习模型
时间: 2024-03-21 22:42:56 浏览: 75
好的,下面是使用Python实现SVM算法并用sklearn库实现Mnist手写数字识别机器学习模型的步骤:
1.导入必要的库
``` python
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets, svm, metrics
```
2.加载Mnist数据集
``` python
digits = datasets.load_digits()
```
3.将数据集分为训练集和测试集
``` python
n_samples = len(digits.images)
X = digits.images.reshape((n_samples, -1))
y = digits.target
X_train, y_train = X[:n_samples // 2], y[:n_samples // 2]
X_test, y_test = X[n_samples // 2:], y[n_samples // 2:]
```
4.创建SVM分类器并拟合训练数据
``` python
classifier = svm.SVC(gamma=0.001)
classifier.fit(X_train, y_train)
```
5.使用测试集数据进行预测
``` python
predicted = classifier.predict(X_test)
```
6.计算分类器的准确率
``` python
print("Classification report for classifier %s:\n%s\n"
% (classifier, metrics.classification_report(y_test, predicted)))
print("Confusion matrix:\n%s" % metrics.confusion_matrix(y_test, predicted))
```
7.可视化测试集数据和预测结果
``` python
fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(8, 8))
for ax, image, prediction in zip(axes.flatten(), X_test, predicted):
ax.set_axis_off()
image = image.reshape(8, 8)
ax.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
ax.set_title(f'Prediction: {prediction}')
plt.show()
```
完整代码如下:
阅读全文