python神经网络分析案例
时间: 2023-09-08 08:11:27 浏览: 155
以下是一个使用Python神经网络进行分类分析的案例:
数据集:鸢尾花数据集
鸢尾花数据集是一个经典的分类数据集,包含3种不同种类的鸢尾花,每种鸢尾花有4个特征,共计150个样本。
代码:
首先需要导入必要的库:
```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import to_categorical
```
加载数据集:
```python
data = load_iris()
X = data.data
y = data.target
```
划分训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
对标签进行独热编码:
```python
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
```
构建神经网络模型:
```python
model = Sequential()
model.add(Dense(8, input_dim=4, activation='relu'))
model.add(Dense(3, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
```
训练模型:
```python
model.fit(X_train, y_train, epochs=50, batch_size=5)
```
评估模型:
```python
_, accuracy = model.evaluate(X_test, y_test)
print('Accuracy: %.2f' % (accuracy*100))
```
完整代码:
```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import to_categorical
data = load_iris()
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
model = Sequential()
model.add(Dense(8, input_dim=4, activation='relu'))
model.add(Dense(3, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X_train, y_train, epochs=50, batch_size=5)
_, accuracy = model.evaluate(X_test, y_test)
print('Accuracy: %.2f' % (accuracy*100))
```
输出结果:
```
Epoch 1/50
120/120 [==============================] - 0s 1ms/step - loss: 2.3543 - accuracy: 0.3333
Epoch 2/50
120/120 [==============================] - 0s 171us/step - loss: 2.1252 - accuracy: 0.3333
Epoch
阅读全文
相关推荐
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)