怎样在yolov5中使用Warmup
时间: 2024-01-24 10:17:26 浏览: 154
在 YOLOv5 中使用 Warmup,可以通过以下步骤来实现:
1. 在 `train.py` 文件中添加以下代码:
```
def warmup_lr_scheduler(optimizer, warmup_iters, warmup_factor):
"""
Warmup learning rate scheduler
Args:
optimizer: optimizer
warmup_iters: number of iterations for warmup
warmup_factor: factor to increase learning rate by during warmup
"""
def f(x):
if x >= warmup_iters:
return 1
alpha = float(x) / warmup_iters
return warmup_factor * (1 - alpha) + alpha
return torch.optim.lr_scheduler.LambdaLR(optimizer, f)
```
2. 在 `train.py` 文件中修改 `train` 函数:
```
def train(hyp, # hyperparameters
opt, # options
device,
):
"""
Train YOLOv5 model
Args:
hyp: hyperparameters
opt: options
device: device to train on
"""
...
# Initialize warmup scheduler
if opt.warmup_iters > 0:
warmup_lr = opt.hyp['lr'] * 0.1
warmup_scheduler = warmup_lr_scheduler(optimizer, opt.warmup_iters, warmup_lr)
else:
warmup_scheduler = None
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
...
for i, (imgs, targets, paths, _) in enumerate(train_loader): # batch -------------------------------------------------------------
...
# Warmup
if warmup_scheduler and len(optimizer.param_groups) == 1 and epoch == 0 and i <= opt.warmup_iters:
warmup_factor = warmup_scheduler.get_lr()[0]
new_lr = opt.hyp['lr'] * warmup_factor
for param_group in optimizer.param_groups:
param_group['lr'] = new_lr
warmup_scheduler.step()
...
```
3. 在训练命令中添加 `--warmup_iters [iterations]` 参数,其中 `[iterations]` 是你想要进行 warmup 的迭代次数。
通过这些步骤,你就可以在 YOLOv5 中使用 Warmup 了。
阅读全文