write the total code using sparse caterorical crossentropy
时间: 2023-02-14 13:43:00 浏览: 85
Sparse Code Multiple Access_sparsecoding_MIMOchannel_
```python
from keras.losses import sparse_categorical_crossentropy
from keras.models import Sequential
from keras.layers import Dense
# define model
model = Sequential()
model.add(Dense(units=64, activation='relu', input_shape=(input_shape,)))
model.add(Dense(units=num_classes, activation='softmax'))
# compile model
model.compile(optimizer='adam', loss=parsing_categorical_crossentropy, metrics=['accuracy'])
# train model
model.fit(x_train, y_train, batch_size=32, epochs=10, validation_data=(x_val, y_val))
```
上面的代码展示了如何使用Keras中的sparse_categorical_crossentropy来编译模型并训练模型。首先定义模型为Sequential,添加两个全连接层,然后使用sparse_categorical_crossentropy作为损失函数和Adam作为优化器来编译模型。最后训练模型。
注意:请确保在使用sparse_categorical_crossentropy时输入的标签是整数而不是one-hot编码。
阅读全文