写出在MATLAB中,使用DDPG优化PID参数的代码

时间: 2023-09-08 15:05:00 浏览: 261
### 回答1: 我们可以使用MATLAB中的rlDDPGTuning函数来优化PID参数。代码如下:[KP,KI,KD] = rlDDPGTuning(@PID_controller,pid); 其中,@PID_controller是控制器的函数句柄,pid是初始PID参数的向量。 ### 回答2: 在MATLAB中使用DDPG算法来优化PID参数的代码如下: ``` matlab % DDPG优化PID参数的代码 % 步骤1:定义DDPG网络结构 % 定义Actor网络结构 actor_network = [ imageInputLayer([state_dimension, 1, 1],'Normalization','none','Name','state') fullyConnectedLayer(400,'Name','fc1') reluLayer('Name','relu1') fullyConnectedLayer(300,'Name','fc2') reluLayer('Name','relu2') fullyConnectedLayer(action_dimension,'Name','output')]; % 定义Critic网络结构 critic_network = [ imageInputLayer([state_dimension, 1, 1],'Normalization','none','Name','state') fullyConnectedLayer(400,'Name','fc1') reluLayer('Name','relu1') fullyConnectedLayer(300,'Name','fc2') reluLayer('Name','relu2') fullyConnectedLayer(1,'Name','output')]; % 步骤2:定义DDPG算法参数 agentOpts = rlDDPGAgentOptions; agentOpts.SampleTime = step_size; agentOpts.DiscountFactor = discount_factor; agentOpts.TargetSmoothFactor = target_smoothing_factor; % 步骤3:创建DDPG代理 agent = rlDDPGAgent(actor_network, critic_network, agentOpts); % 步骤4:定义环境 env = rlSimulinkEnv(system_name, block_names, signals); % 步骤5:优化PID参数 % 训练步数 num_episodes = 100; for episode = 1:num_episodes % 重置环境 obs = resetObservation(env); done = false; while ~done % 选择动作 action = selectAction(agent, obs); % 执行动作并观察下一个状态、回报和终止信号 [nextObs, reward, done] = step(env, action); % 存储经验 experience = rlExperience(obs, action, reward, nextObs, done); % 每步学习 agent = learn(agent, experience); % 更新当前状态 obs = nextObs; end end ``` 以上代码演示了使用DDPG算法优化PID参数的过程,其中定义了Actor和Critic网络结构,设置了DDPG算法参数,创建了DDPG代理,定义了环境,并执行了训练循环来逐步优化PID参数。需要注意的是,上述代码中的`state_dimension`、`action_dimension`、`step_size`、`discount_factor`、`target_smoothing_factor`、`system_name`和`block_names`等参数需要根据实际情况进行设置。 ### 回答3: 在MATLAB中使用DDPG(Deep Deterministic Policy Gradient)算法优化PID参数的代码如下: ```matlab % 系统模型和初始PID参数设置 sys = tf([1],[1,1]); Kp = 1; Ki = 0.5; Kd = 0.1; pid = pid(Kp, Ki, Kd); % 状态和行为空间定义 obsDim = 1; % 状态空间维度 actionDim = 3; % 行为空间维度 obsUB = 10; % 状态上界 obsLB = -10; % 状态下界 actionUB = 1; % 行为上界 actionLB = -1; % 行为下界 % 设置DDPG超参数 actorOpts = rlRepresentationOptions('Observation',{'Continuous'},... 'Action',{'Continuous'},'ActionSampleType','Gaussian'); criticOpts = rlRepresentationOptions('Observation',{'Continuous'},... 'Action',{'Continuous'}); actor = rlDeterministicActorRepresentation(actorOpts,obsDim,actionDim); critic = rlQValueRepresentation(criticOpts,obsDim,actionDim); agentOpts = rlDDPGAgentOptions('SampleTime',0.01,... 'TargetSmoothFactor',1e-3,'DiscountFactor',0.99); agent = rlDDPGAgent(actor,critic,agentOpts); % 创建环境 env = rlSimulinkEnv(sys,'ResetFcn',@(in)setParams(in,Kp,Ki,Kd),'StopFcn',@(in,~,logs)stopSim(in,false,logs)); env.ResetFcn = @(in)setParams(in,Kp,Ki,Kd); % 训练 trainOpts = rlTrainingOptions('MaxEpisodes',1000,'MaxStepsPerEpisode',200,... 'Verbose',false,'Plots','training-progress'); trainOpts.ScoreAveragingWindowLength = 30; trainOpts.StopTrainingCriteria = "AverageReward"; trainOpts.StopTrainingValue = inf; % RL网络训练 doTraining = true; while doTraining % 训练DDPG智能体 trainingStats = train(agent,env,trainOpts); % 检查训练终止的条件 if trainingStats.AverageReward > -50 doTraining = false; else % 更新PID参数 action = predict(actor,obs); Kp = Kp + action(1); Ki = Ki + action(2); Kd = Kd + action(3); pid = pid(Kp, Ki, Kd); env.ResetFcn = @(in)setParams(in,Kp,Ki,Kd); end end % 设置新的PID控制器参数 function setParams(in,Kp,Ki,Kd) in.mass = Kp; in.damping = Ki; in.spring = Kd; end % 检查训练是否终止并停止仿真 function stopSim(in,isdone,logs) if isdone Kp = 0.1; Ki = 0.1; Kd = 0.1; pid = pid(Kp, Ki, Kd); setParams(in,Kp,Ki,Kd); logs.States{end,:) = in; logs.Rewards{end} = -50; end stop(in); end ``` 该代码中,首先定义了系统模型、初始PID参数和状态、行为空间的设置。然后设置了DDPG算法的超参数,并创建了DDPG智能体对象。接着创建了Simulink环境,用于模拟系统。利用训练选项和训练函数对DDPG智能体进行训练,同时在每次训练迭代中根据智能体的输出更新PID参数。最后定义了设置PID参数的函数和停止仿真的函数。
阅读全文

相关推荐

最新推荐

recommend-type

基于神经网络优化pid参数的过程控制.doc

基于神经网络优化PID参数的过程控制 本文主要介绍基于神经网络优化PID参数的柴油机转速控制系统。该系统通过基于BP神经网络的PID控制器,自动在线修正PID参数,从而控制柴油机转速,提高控制效果。同时,文中还对...
recommend-type

王济-matlab在振动信号处理中的应用代码.docx

Matlab在振动信号处理中的应用代码 本文档总结了Matlab在振动信号处理中的应用代码,包括消除多项式趋势项和五点滑动平均法平滑处理两个程序。这些代码对于处于振动信号的小白非常有用,亲测可以完美运行。 程序4-...
recommend-type

拓扑优化SIMP方法开山之作99行代码论文 中文翻译

代码分为主程序、优化程序、敏度过滤分析和有限元分析子程序,其中核心的MATLAB代码仅有49行,加上3行补充代码,即可处理多种负载情况。 在拓扑优化领域,SIMP方法假设物质性能恒定,将设计区域划分为多个元素,并...
recommend-type

基于遗传算法的MATLAB16阵元天线的优化.doc

MATLAB源代码中,初始化参数如个体数、选择概率、变异概率、信号频率等,生成初始种群并进行迭代优化。遗传算法的核心操作包括:随机生成初始种群、适应度评估、选择、交叉和变异,以及迭代过程,直至达到最大遗传...
recommend-type

GSO萤火虫智能优化算法MATLAB代码

萤火虫群智能优化算法(Glowworm Swarm Optimization, GSO)是由K.N.Krishnanand和D.Ghose两位学者在2005年提出的一种通过模拟自然界中萤火虫发光行为而构造出的新型群智能优化算法。它模拟了自然界中萤火虫群中个体...
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。