pytorch PINN求解PDE的Riemann问题的预测解和真实解以及误差图的代码
时间: 2024-02-13 11:04:20 浏览: 132
以下是使用PyTorch PINN求解PDE的Riemann问题的预测解和真实解以及误差图的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
# 定义Riemann问题的初始状态
x_left = torch.linspace(-1, 0, 50).reshape((50, 1))
x_right = torch.linspace(0, 1, 50).reshape((50, 1))
u_left = torch.zeros_like(x_left)
u_right = torch.ones_like(x_right)
u = torch.cat((u_left, u_right), dim=0)
# 定义神经网络模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(1, 20)
self.fc2 = nn.Linear(20, 20)
self.fc3 = nn.Linear(20, 1)
def forward(self, x):
x = torch.tanh(self.fc1(x))
x = torch.tanh(self.fc2(x))
x = self.fc3(x)
return x
# 定义损失函数和优化器
def pinn_loss(output, x, u):
dx = torch.autograd.grad(output.sum(), x, create_graph=True)[0]
du = torch.autograd.grad(output.sum(), u, create_graph=True)[0]
d2u = torch.autograd.grad(du.sum(), x, create_graph=True)[0]
f = d2u + u * du
return torch.mean((f - 0.5)**2) + torch.mean((dx - output)**2)
net = Net()
optimizer = optim.Adam(net.parameters(), lr=0.01)
# 训练神经网络
for i in range(5000):
optimizer.zero_grad()
output = net(u)
loss = pinn_loss(output, torch.cat((x_left, x_right), dim=0), u)
loss.backward()
optimizer.step()
# 绘制预测解和真实解以及误差图
x = torch.linspace(-1, 1, 100).reshape((100, 1))
with torch.no_grad():
u_pred = net(x)
u_true = torch.where(x < 0, torch.zeros_like(x), torch.ones_like(x))
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.plot(x.numpy(), u_pred.numpy(), label='Predicted')
plt.plot(x.numpy(), u_true.numpy(), label='True')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(x.numpy(), np.abs(u_pred.numpy() - u_true.numpy()))
plt.show()
```
在代码中,我们首先定义了Riemann问题的初始状态,然后定义了一个三层的神经网络模型,包括两个全连接层和一个输出层。损失函数使用了PINN的思想,通过求取一阶和二阶导数来构造边界条件和PDE的残差项。训练完神经网络后,我们使用训练好的模型来预测在整个区间内的解,并绘制出预测解、真实解以及误差图。
阅读全文