帮我利用yolov4算法写一个数据集为mot17det的行人检测python文件
时间: 2024-02-25 18:57:02 浏览: 82
多目标跟踪MOT格式转YOLO格式,并存在一个文件夹中,内含源码和小型MOT数据集
好的,以下是一个基于YOLOv4算法的行人检测Python文件,可以用于MOT17Det数据集。
```python
import cv2
import numpy as np
# Load YOLOv4
net = cv2.dnn.readNet("yolov4.weights", "yolov4.cfg")
# Define output layer names
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# Load MOT17Det video
cap = cv2.VideoCapture("path/to/MOT17Det/video.mp4")
# Define classes
classes = ["person"]
# Define colors
colors = np.random.uniform(0, 255, size=(len(classes), 3))
# Loop through video frames
while True:
ret, frame = cap.read()
if not ret:
break
# Get image dimensions
height, width, channels = frame.shape
# Prepare input image for YOLOv4
blob = cv2.dnn.blobFromImage(frame, 1/255, (416, 416), swapRB=True, crop=False)
# Set input image for YOLOv4
net.setInput(blob)
# Forward pass through YOLOv4
outputs = net.forward(output_layers)
# Define lists for bounding boxes, confidences and class IDs
boxes = []
confidences = []
class_ids = []
# Loop through output layers
for output in outputs:
# Loop through detections
for detection in output:
# Get class ID and confidence
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
# If object is a person and confidence is high enough
if classes[class_id] == "person" and confidence > 0.5:
# Get bounding box coordinates
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
x = center_x - w // 2
y = center_y - h // 2
# Append bounding box, confidence and class ID to lists
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
# Apply non-maximum suppression to remove overlapping bounding boxes
indices = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# Draw bounding boxes and class labels on image
for i in indices:
i = i[0]
color = colors[class_ids[i]]
x, y, w, h = boxes[i]
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
cv2.putText(frame, classes[class_ids[i]] + " " + str(round(confidences[i], 2)), (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# Display output frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1)
if key == 27:
break
# Release video capture and close all windows
cap.release()
cv2.destroyAllWindows()
```
需要注意的是,此代码假定您已经将YOLOv4配置文件和权重文件下载到本地,并根据您的实际情
阅读全文