python 模型的rad-score如何计算,并画图
时间: 2024-02-11 20:09:27 浏览: 176
Rad-Score是一种用于评估文本生成模型的质量的指标,它考虑了生成文本的多样性和相关性。在Python中,可以使用以下步骤计算Rad-Score,并画出相应的图表:
1. 安装必要的库:pip install transformers, nltk, numpy, matplotlib
2. 导入库和模型:
```python
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from nltk.tokenize import sent_tokenize
import numpy as np
import matplotlib.pyplot as plt
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2', output_hidden_states=True)
```
3. 定义计算Rad-Score的函数:
```python
def rad_score(text, num_samples=3):
input_ids = tokenizer.encode(text, return_tensors='pt')
with torch.no_grad():
outputs = model.generate(
input_ids=input_ids,
max_length=50,
do_sample=True,
num_return_sequences=num_samples
)
generated_texts = []
for i in range(num_samples):
generated_text = tokenizer.decode(outputs[i], skip_special_tokens=True)
generated_texts.append(generated_text)
reference_texts = sent_tokenize(text)
scores = []
for generated_text in generated_texts:
generated_sentences = sent_tokenize(generated_text)
score = 0
for reference_sentence in reference_texts:
reference_words = reference_sentence.split()
for generated_sentence in generated_sentences:
generated_words = generated_sentence.split()
common_words = set(reference_words).intersection(generated_words)
score += len(common_words) / len(generated_words)
score /= len(reference_texts)
scores.append(score)
return np.mean(scores)
```
该函数输入文本和生成的样本数,输出Rad-Score。
4. 绘制Rad-Score随样本数变化的图表:
```python
sample_sizes = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
rad_scores = []
for sample_size in sample_sizes:
rad_score_avg = 0
for i in range(10):
rad_score_avg += rad_score(text, sample_size)
rad_score_avg /= 10
rad_scores.append(rad_score_avg)
plt.plot(sample_sizes, rad_scores)
plt.xlabel('Number of Samples')
plt.ylabel('Rad-Score')
plt.show()
```
该代码会生成一个随着样本数变化的Rad-Score图表。
阅读全文