生成一个deepspeech的训练代码,能在jupyter notebook中使用
时间: 2024-02-04 22:03:02 浏览: 142
以下是基于DeepSpeech 0.9.3版本的训练代码,可以在Jupyter Notebook中使用。请确保已经安装好DeepSpeech和其他必要的依赖项。
``` python
import os
import json
import deepspeech
import tensorflow as tf
import numpy as np
import pandas as pd
from tqdm import tqdm
# 设置一些基本参数
model_path = "/path/to/model.pbmm"
scorer_path = "/path/to/scorer.scorer"
train_csv_path = "/path/to/train.csv"
test_csv_path = "/path/to/test.csv"
batch_size = 16
num_epochs = 10
learning_rate = 0.0001
dropout_rate = 0.05
display_step = 50
save_step = 500
validation_step = 500
train_steps = 5000
# 加载模型和评估器
model = deepspeech.Model(model_path)
model.enableExternalScorer(scorer_path)
lm_alpha = 0.75
lm_beta = 1.85
model.setScorerAlphaBeta(lm_alpha, lm_beta)
model.setBeamWidth(500)
# 定义输入占位符
input_tensor = tf.placeholder(tf.float32, [None, None, 26], name='input')
seq_length = tf.placeholder(tf.int32, [None], name='seq_length')
targets = tf.sparse_placeholder(tf.int32, name='targets')
dropout = tf.placeholder(tf.float32, name='dropout')
# 定义网络结构
with tf.name_scope("DeepSpeech"):
# 定义卷积层
conv1 = tf.layers.conv1d(inputs=input_tensor, filters=32, kernel_size=11,
strides=2, padding='valid', name='conv1',
activation=tf.nn.relu, kernel_initializer=tf.contrib.layers.variance_scaling_initializer())
max_pool1 = tf.layers.max_pooling1d(inputs=conv1, pool_size=2, strides=2, name='max_pool1')
conv2 = tf.layers.conv1d(inputs=max_pool1, filters=48, kernel_size=11,
strides=1, padding='valid', name='conv2',
activation=tf.nn.relu, kernel_initializer=tf.contrib.layers.variance_scaling_initializer())
max_pool2 = tf.layers.max_pooling1d(inputs=conv2, pool_size=2, strides=2, name='max_pool2')
# 定义循环神经网络层
rnn1 = tf.contrib.rnn.LSTMCell(512, name='rnn1')
rnn1_dropout = tf.contrib.rnn.DropoutWrapper(rnn1, output_keep_prob=1. - dropout)
rnn2 = tf.contrib.rnn.LSTMCell(512, name='rnn2')
rnn2_dropout = tf.contrib.rnn.DropoutWrapper(rnn2, output_keep_prob=1. - dropout)
rnn3 = tf.contrib.rnn.LSTMCell(512, name='rnn3')
rnn3_dropout = tf.contrib.rnn.DropoutWrapper(rnn3, output_keep_prob=1. - dropout)
rnn_outputs, _ = tf.nn.dynamic_rnn(rnn1_dropout, max_pool2, dtype=tf.float32, sequence_length=seq_length,
scope='rnn1')
rnn_outputs, _ = tf.nn.dynamic_rnn(rnn2_dropout, rnn_outputs, dtype=tf.float32, sequence_length=seq_length,
scope='rnn2')
rnn_outputs, _ = tf.nn.dynamic_rnn(rnn3_dropout, rnn_outputs, dtype=tf.float32, sequence_length=seq_length,
scope='rnn3')
# 定义全连接层
fc1 = tf.layers.dense(inputs=rnn_outputs, units=2048, name='fc1',
activation=tf.nn.relu, kernel_initializer=tf.contrib.layers.variance_scaling_initializer())
fc1_dropout = tf.layers.dropout(fc1, rate=dropout)
fc2 = tf.layers.dense(inputs=fc1_dropout, units=2048, name='fc2',
activation=tf.nn.relu, kernel_initializer=tf.contrib.layers.variance_scaling_initializer())
fc2_dropout = tf.layers.dropout(fc2, rate=dropout)
logits = tf.layers.dense(inputs=fc2_dropout, units=model.vocab_length(), name='logits',
kernel_initializer=tf.contrib.layers.variance_scaling_initializer())
# 定义损失函数和优化器
with tf.name_scope("Loss"):
sparse_targets = tf.sparse_placeholder(tf.int32)
ctc_loss = tf.nn.ctc_loss(sparse_targets, logits, seq_length)
loss = tf.reduce_mean(ctc_loss, name='loss')
with tf.name_scope("Optimizer"):
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
gradients, variables = zip(*optimizer.compute_gradients(loss))
gradients, _ = tf.clip_by_global_norm(gradients, 5.0)
train_op = optimizer.apply_gradients(zip(gradients, variables))
# 定义评估函数
with tf.name_scope("Evaluation"):
decoded, _ = tf.nn.ctc_beam_search_decoder(logits, seq_length, beam_width=500, top_paths=1,
merge_repeated=False)
dense_decoded = tf.sparse_tensor_to_dense(decoded[0], default_value=-1)
cer = tf.reduce_mean(tf.edit_distance(tf.cast(decoded[0], tf.int32), targets), name='cer')
# 定义函数用于生成数据批次
def generate_data_batches(data, batch_size):
num_batches = int(np.ceil(len(data) / batch_size))
for i in range(num_batches):
start_idx = i * batch_size
end_idx = min((i + 1) * batch_size, len(data))
yield data[start_idx:end_idx]
# 加载训练和测试数据
train_data = pd.read_csv(train_csv_path)
test_data = pd.read_csv(test_csv_path)
# 建立会话并训练模型
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(num_epochs):
train_loss = 0
train_cer = 0
for batch in tqdm(generate_data_batches(train_data, batch_size)):
inputs, targets_, seq_lengths = prepare_data(batch)
feed_dict = {input_tensor: inputs,
targets: targets_,
seq_length: seq_lengths,
dropout: dropout_rate}
_, batch_loss, batch_cer = sess.run([train_op, loss, cer], feed_dict=feed_dict)
train_loss += batch_loss * len(batch)
train_cer += batch_cer * len(batch)
train_loss /= len(train_data)
train_cer /= len(train_data)
if epoch % display_step == 0:
print('Epoch: {:>4}/{:<4} Train loss: {:.4f} Train CER: {:.4f}'.format(
epoch+1, num_epochs, train_loss, train_cer))
if epoch % validation_step == 0:
val_loss = 0
val_cer = 0
for batch in tqdm(generate_data_batches(test_data, batch_size)):
inputs, targets_, seq_lengths = prepare_data(batch)
feed_dict = {input_tensor: inputs,
targets: targets_,
seq_length: seq_lengths,
dropout: 0.0}
batch_loss, batch_cer = sess.run([loss, cer], feed_dict=feed_dict)
val_loss += batch_loss * len(batch)
val_cer += batch_cer * len(batch)
val_loss /= len(test_data)
val_cer /= len(test_data)
print('Validation loss: {:.4f} Validation CER: {:.4f}'.format(val_loss, val_cer))
if epoch % save_step == 0:
save_path = '/path/to/checkpoint/model.ckpt-{}'.format(epoch)
saver.save(sess, save_path)
# 最后保存训练好的模型
save_path = '/path/to/checkpoint/model.ckpt'
saver.save(sess, save_path)
```
请注意,上面的代码中包含了一些辅助函数和数据准备代码,这些代码没有包含在上面的示例中。您需要根据您自己的数据格式和需求进行适当的更改。
阅读全文