基于谱减法的自适应消嗓算法
时间: 2023-12-10 14:30:59 浏览: 129
基于谱减法的自适应消噪算法是一种常用于音频信号处理的算法,能够有效地去除信号中的噪声和杂音。该算法的核心思想是利用噪声和信号之间的差异,通过对信号进行频域分析,利用谱减法将噪声和信号的能量进行分离,并对噪声部分进行滤波处理,最终将滤波后的信号与原始信号进行重构,从而达到消噪的效果。
具体来说,该算法的实现过程包括以下几个步骤:
1.将输入信号进行分帧,每帧长度为N,帧与帧之间存在50%重叠。
2.对每一帧信号进行傅里叶变换,将时域信号转换为频域信号。
3.计算每一帧信号的功率谱,将得到的功率谱与先前估计的噪声功率谱进行比较,得到一个谱减因子。
4.将谱减因子应用于当前帧的频谱,得到滤波后的信号频谱。
5.将滤波后的信号频谱进行傅里叶逆变换,得到时域信号。
6.重叠相加得到最终的输出信号。
需要注意的是,该算法在实际应用中需要进行一些参数调整和优化,比如设置合适的谱减因子阈值、选择合适的滤波器类型和参数等,以达到较好的消噪效果。
相关问题
基于谱减法的自适应消嗓算法 C语言
下面是基于谱减法的自适应消噪算法的C语言实现代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define N 256 //每帧长度
#define PI 3.1415926535 //圆周率
//复数结构体
typedef struct
{
double real;
double imag;
} complex;
//分帧函数
void framing(double *signal, double **frame, int frame_num)
{
int i, j, k;
for (i = 0; i < frame_num; i++)
{
for (j = 0; j < N; j++)
{
k = i * N + j;
frame[i][j] = signal[k];
}
}
}
//FFT变换函数
void fft(complex *x, complex *y, int n)
{
int i, j, k;
complex t, u;
double p;
for (i = 0; i < n; i++)
{
y[i].real = x[i].real;
y[i].imag = x[i].imag;
}
for (i = 0; i < n; i++)
{
j = 0;
k = i;
while (k > 0)
{
j = (j << 1) | (k & 1);
k >>= 1;
}
if (i < j)
{
t.real = y[i].real;
t.imag = y[i].imag;
y[i].real = y[j].real;
y[i].imag = y[j].imag;
y[j].real = t.real;
y[j].imag = t.imag;
}
}
for (i = 2; i <= n; i <<= 1)
{
p = PI / (i >> 1);
t.real = cos(p);
t.imag = -sin(p);
for (j = 0; j < n; j += i)
{
u.real = 1.0;
u.imag = 0.0;
for (k = j; k < j + (i >> 1); k++)
{
t.real = u.real * y[k + (i >> 1)].real - u.imag * y[k + (i >> 1)].imag;
t.imag = u.real * y[k + (i >> 1)].imag + u.imag * y[k + (i >> 1)].real;
y[k + (i >> 1)].real = y[k].real - t.real;
y[k + (i >> 1)].imag = y[k].imag - t.imag;
y[k].real += t.real;
y[k].imag += t.imag;
t.real = u.real * cos(p) - u.imag * sin(p);
t.imag = u.real * sin(p) + u.imag * cos(p);
u.real = t.real;
u.imag = t.imag;
}
}
}
}
//功率谱函数
void power_spectrum(complex *y, double *power, int n)
{
int i;
for (i = 0; i < n; i++)
power[i] = y[i].real * y[i].real + y[i].imag * y[i].imag;
}
//谱减函数
void spectral_subtraction(double *power, double *noise_power, double *factor, int n)
{
int i;
for (i = 0; i < n; i++)
{
if (power[i] < noise_power[i])
factor[i] = 1.0;
else
factor[i] = sqrt((power[i] - noise_power[i]) / power[i]);
}
}
//IFFT变换函数
void ifft(complex *y, complex *x, int n)
{
int i;
for (i = 0; i < n; i++)
y[i].imag = -y[i].imag;
fft(y, x, n);
for (i = 0; i < n; i++)
{
x[i].real = x[i].real / n;
x[i].imag = -x[i].imag / n;
}
}
//重叠相加函数
void overlap_add(double **frame, double *result, int frame_num)
{
int i, j, k;
for (i = 0; i < frame_num; i++)
{
for (j = 0; j < N; j++)
{
k = i * N + j;
result[k] += frame[i][j];
}
}
}
//消噪函数
void noise_reduction(double *signal, double *result, int signal_len, double *noise_power, double threshold)
{
int frame_num = (int)ceil(signal_len * 1.0 / N); //总帧数
double **frame = (double **)malloc(frame_num * sizeof(double *)); //每帧信号数组
int i, j;
for (i = 0; i < frame_num; i++)
frame[i] = (double *)malloc(N * sizeof(double));
framing(signal, frame, frame_num);
complex *x = (complex *)malloc(N * sizeof(complex));
complex *y = (complex *)malloc(N * sizeof(complex));
double *power = (double *)malloc(N * sizeof(double));
double *factor = (double *)malloc(N * sizeof(double));
for (i = 0; i < N; i++)
{
x[i].real = 0.0;
x[i].imag = 0.0;
}
for (i = 0; i < frame_num; i++)
{
for (j = 0; j < N; j++)
{
if (i * N + j < signal_len)
x[j].real = frame[i][j];
else
x[j].real = 0.0;
x[j].imag = 0.0;
}
fft(x, y, N);
power_spectrum(y, power, N);
spectral_subtraction(power, noise_power, factor, N);
for (j = 0; j < N; j++)
{
y[j].real = y[j].real * factor[j];
y[j].imag = y[j].imag * factor[j];
}
ifft(y, x, N);
for (j = 0; j < N; j++)
{
if (i * N + j < signal_len)
frame[i][j] = x[j].real;
else
frame[i][j] = 0.0;
}
}
overlap_add(frame, result, frame_num);
for (i = 0; i < frame_num; i++)
free(frame[i]);
free(frame);
free(x);
free(y);
free(power);
free(factor);
}
int main()
{
double signal[1024]; //原始信号
double result[1024]; //消噪后的信号
double noise_power[N]; //噪声功率谱
double threshold = 0.5; //谱减因子阈值
int signal_len = 1024; //原始信号长度
int i;
for (i = 0; i < signal_len; i++)
signal[i] = sin(2.0 * PI * 100.0 * i / 8000.0) + 0.5 * sin(2.0 * PI * 300.0 * i / 8000.0); //原始信号为100Hz和300Hz的正弦信号叠加
for (i = 0; i < N; i++)
noise_power[i] = 0.0001; //初始化噪声功率谱,设一个很小的值
noise_reduction(signal, result, signal_len, noise_power, threshold);
for (i = 0; i < signal_len; i++)
printf("%f ", result[i]);
return 0;
}
```
这份代码实现了基于谱减法的自适应消噪算法,使用了分帧、FFT、功率谱、谱减、IFFT和重叠相加等技术。需要注意的是,为了简化代码,本例中噪声功率谱被初始化为一个很小的值,实际应用中需要根据实际情况进行估计。另外,谱减因子阈值也需要根据实际情况进行调整,以达到较好的消噪效果。
基于谱减法的自适应消噪算法C语言
以下是一个基于谱减法的自适应消噪算法的C语言示例:
```c
#define FRAME_SIZE 256
#define OVERLAP_SIZE 128
#define THRESHOLD 30
float noise_spectrum[FRAME_SIZE] = {0};
float alpha = 0.1;
void subtract_noise(float* input_frame, float* output_frame)
{
float spectrum[FRAME_SIZE] = {0};
float magnitude[FRAME_SIZE] = {0};
float phase[FRAME_SIZE] = {0};
float noise_magnitude[FRAME_SIZE] = {0};
float ratio[FRAME_SIZE] = {0};
float output_spectrum[FRAME_SIZE] = {0};
float output_frame_temp[FRAME_SIZE] = {0};
int i;
// Calculate the magnitude and phase of input frame using FFT
fft(input_frame, spectrum, phase, FRAME_SIZE);
// Calculate the magnitude of noise spectrum using exponential smoothing
for (i = 0; i < FRAME_SIZE; i++)
{
noise_spectrum[i] = alpha * noise_spectrum[i] + (1 - alpha) * spectrum[i];
noise_magnitude[i] = sqrtf(noise_spectrum[i]);
}
// Calculate the magnitude of input frame
for (i = 0; i < FRAME_SIZE; i++)
{
magnitude[i] = sqrtf(spectrum[i]);
}
// Calculate the ratio of magnitude of input frame and noise spectrum
for (i = 0; i < FRAME_SIZE; i++)
{
if (magnitude[i] > noise_magnitude[i])
{
ratio[i] = 20 * log10f(magnitude[i] / noise_magnitude[i]);
}
else
{
ratio[i] = 0;
}
}
// Subtract the noise floor
for (i = 0; i < FRAME_SIZE; i++)
{
if (ratio[i] < THRESHOLD)
{
output_spectrum[i] = noise_spectrum[i];
}
else
{
output_spectrum[i] = spectrum[i] - noise_spectrum[i];
}
}
// Calculate the output frame using IFFT
ifft(output_spectrum, phase, output_frame_temp, FRAME_SIZE);
// Overlap and add the output frame to the previous frame
for (i = 0; i < FRAME_SIZE; i++)
{
output_frame[i] = output_frame_temp[i] + input_frame[i + OVERLAP_SIZE];
}
// Shift the frames
for (i = 0; i < OVERLAP_SIZE; i++)
{
input_frame[i] = input_frame[i + OVERLAP_SIZE];
}
}
```
这个示例中,使用了一个长度为256的帧和一个长度为128的重叠。alpha为指数平滑系数,用于计算噪声谱。THRESHOLD为信噪比的阈值,低于该阈值的幅度被认为是噪声,而高于该阈值的幅度被认为是信号。
在subtract_noise函数中,首先使用FFT计算输入帧的幅度和相位谱,然后使用指数平滑法计算噪声谱,并计算输入帧幅度和噪声幅度的比值。根据信噪比阈值,将低于阈值的幅度视为噪声,而高于阈值的幅度视为信号,并将噪声谱从输入帧的幅度谱中减去,得到输出帧的幅度谱。最后使用IFFT计算输出帧,将其与前一个帧进行重叠和相加,得到最终的输出帧。
需要注意的是,该算法需要实时计算FFT和IFFT,因此在实际应用中需要考虑到性能和时间延迟等问题。
阅读全文