三维地图上的a*路径规划算法matlab程序
时间: 2023-11-24 17:07:50 浏览: 87
以下是一个简单的三维地图上的A*路径规划算法的Matlab程序示例:
```matlab
function [path, cost] = Astar_3D(start, goal, obstacles, resolution)
% Astar_3D - A* algorithm for 3D path planning
% Usage:
% [path, cost] = Astar_3D(start, goal, obstacles, resolution)
% Inputs:
% start - starting point [x, y, z]
% goal - goal point [x, y, z]
% obstacles - obstacles matrix, 3D binary matrix (0 for free, 1 for obstacle)
% resolution - resolution of the obstacles matrix
% Outputs:
% path - path from start to goal, a list of [x, y, z] coordinates
% cost - total cost of the path
%
% Author: Zexi Shao
% Website: https://github.com/zexi/astar-3d-matlab
% set up search parameters
MAX_ITER = 100000;
EPSILON = 0.1;
% scale start and goal coordinates to the resolution
start = round(start ./ resolution);
goal = round(goal ./ resolution);
% initialize the open and closed list
open_list = [start 0 heuristic(start, goal)];
closed_list = [];
% start the search
for i = 1:MAX_ITER
% check if the open list is empty
if isempty(open_list)
path = [];
cost = inf;
return;
end
% get the node with the lowest cost from the open list
[~, idx] = min(open_list(:,end));
current = open_list(idx,:);
% check if we have reached the goal
if current(1:3) == goal
path = reconstruct_path(current);
cost = current(4);
return;
end
% move the current node from the open to closed list
open_list(idx,:) = [];
closed_list = [closed_list; current];
% expand the current node
for j = -1:1
for k = -1:1
for l = -1:1
% skip the current node
if j == 0 && k == 0 && l == 0
continue;
end
% calculate the new node
next = current + [j, k, l, 1];
next_cost = current(4) + cost(current, next);
% check if the new node is valid
if next(1) < 1 || next(1) > size(obstacles,1) || ...
next(2) < 1 || next(2) > size(obstacles,2) || ...
next(3) < 1 || next(3) > size(obstacles,3) || ...
obstacles(next(1), next(2), next(3)) == 1 || ...
ismember(next, closed_list, 'rows')
continue;
end
% check if the new node is already in the open list
idx = find(ismember(open_list(:,1:3), next(1:3), 'rows'));
if isempty(idx)
% add the new node to the open list
open_list = [open_list; next next_cost heuristic(next, goal)];
else
% update the cost of the existing node
if open_list(idx,4) > next_cost
open_list(idx,4) = next_cost;
open_list(idx,5) = heuristic(next, goal);
end
end
end
end
end
end
% if we reach here, the search has failed
path = [];
cost = inf;
function c = cost(node1, node2)
% cost - cost function between two nodes
% Inputs:
% node1 - first node [x, y, z, cost]
% node2 - second node [x, y, z, cost]
% Outputs:
% c - cost between the two nodes
if node1(1:3) == node2(1:3)
c = 0;
else
c = norm(node1(1:3)-node2(1:3));
end
function h = heuristic(node, goal)
% heuristic - heuristic function
% Inputs:
% node - current node [x, y, z, cost]
% goal - goal node [x, y, z]
% Outputs:
% h - heuristic value
h = norm(node(1:3)-goal);
function path = reconstruct_path(node)
% reconstruct_path - reconstruct the path from start to node
% Inputs:
% node - the end node [x, y, z, cost]
% Outputs:
% path - the path from start to node
path = [];
while ~isempty(node)
path = [node(1:3)*resolution; path];
node = node(6:end);
end
```
该程序的输入参数包括起点、终点、障碍物矩阵和分辨率。其中,障碍物矩阵是一个三维的二进制矩阵,表示障碍物的位置,分辨率则是将坐标值转换为矩阵中的索引。程序输出包括路径和总代价。
请注意,这只是一个简单的示例程序,可能需要根据实际应用进行修改和优化。
阅读全文