int m_thread_number;这个变量名中的m是什么意思?

时间: 2023-09-14 14:06:10 浏览: 126
### 回答1: 通常情况下,变量名中的 m 是表示 member 的意思,表示这个变量是类的成员变量。在一些编码规范中,为了区分成员变量和局部变量,成员变量前面会加上 m_ 前缀。因此,在这种情况下,m_thread_number 可能是某个类的成员变量,用来记录线程的数量。当然,具体的含义还要结合代码上下文来确定。 ### 回答2: 在计算机编程中,通常用前缀"m_"来表示成员变量(member variable),表示该变量是类的成员之一。通过在变量名前添加"m_"前缀,可以清晰地区分成员变量和其他局部变量或全局变量。这种命名约定有助于提高代码的可读性和易维护性。因此,"m_thread_number"可以解释为一个类的成员变量,用来表示线程数量。 ### 回答3: 在编程中,通常以m_作为成员变量的前缀,表示该变量是一个类的成员。这种命名约定是为了提高代码的可读性和可维护性,以区分成员变量和其他类型的变量。m_thread_number表示一个类的成员变量,用于保存线程数量。
相关问题

#include <iostream>#include <chrono>#include <thread>void increaseNumPerSecond(int& num) { while (true) { num++; std::this_thread::sleep_for(std::chrono::seconds(1)); }}int main() { int num = 0; std::thread t(increaseNumPerSecond, std::ref(num)); while (true) { std::cout << "Current number: " << num << std::endl; std::this_thread::sleep_for(std::chrono::milliseconds(500)); } t.join(); return 0;}

这是一个 C++ 程序,它创建了一个线程来每秒钟增加一个整数变量 num 的值,同时在主线程中每 500 毫秒输出 num 的当前值。程序的主要部分如下所示: ```c++ void increaseNumPerSecond(int& num) { while (true) { num++; std::this_thread::sleep_for(std::chrono::seconds(1)); } } int main() { int num = 0; std::thread t(increaseNumPerSecond, std::ref(num)); while (true) { std::cout << "Current number: " << num << std::endl; std::this_thread::sleep_for(std::chrono::milliseconds(500)); } t.join(); return 0; } ``` 首先定义了一个名为 `increaseNumPerSecond` 的函数,它接受一个整数引用作为参数,然后在一个无限循环中每秒钟将该整数加 1,并通过 `std::this_thread::sleep_for` 函数暂停 1 秒钟。 接下来是 `main` 函数,它声明了一个整数变量 `num`,并创建了一个新的线程 `t`,该线程将调用 `increaseNumPerSecond` 函数并传递 `num` 的引用作为参数。然后,在一个无限循环中,主线程每 500 毫秒输出 `num` 的当前值,并通过 `std::this_thread::sleep_for` 函数暂停 500 毫秒。最后,调用 `t.join()` 等待线程 `t` 结束,并返回 0。 这个程序可以用来演示如何使用 C++11 中的线程库创建一个简单的多线程程序。

请帮我解释这段代码:#include "cmd_parse.h" static int bufed_uart_rcv_1B(void *ref, uint8_t *c) { BUFED_UART_T *h = ref; return bufed_uart_rcv(h, c, 1); } CMD_PARSE_T *cmd_ps_1; osThreadId rx_cmp_tst_hd; extern RNG_HandleTypeDef hrng; void uart1_fast_loopback_test(uint32_t fatfs_ok) { uint8_t *tx_buf, *rx_buf; tx_buf= pvPortMalloc(URT_TST_BUF_LEN); if(tx_buf == NULL){ GS_LOGPRT_ERR("tx_buf pvPortMalloc failed.\r\n"); goto err_00; } rx_buf= pvPortMalloc(URT_TST_BUF_LEN); if(rx_buf == NULL){ GS_LOGPRT_ERR("tx_buf pvPortMalloc failed.\r\n"); goto err_01; } FIL *fp = pvPortMalloc(sizeof(*fp)); if(fp==NULL){ GS_LOGPRT_ERR("tx_buf pvPortMalloc failed.\r\n"); goto err_02; } bfdurt_tst_01.rx_buf = rx_buf; bfdurt_tst_01.tx_buf = tx_buf; bfdurt_tst_01.buf_size = URT_TST_BUF_LEN; bfdurt_tst_01.err_cnt = 0; for(uint32_t i = 0; i < URT_TST_BUF_LEN; i++) tx_buf[i] = HAL_RNG_GetRandomNumber(&hrng); osThreadDef(rx_cmp_tst_tsk, uart_rx_cmp, osPriorityBelowNormal, 0, 200); rx_cmp_tst_hd = osThreadCreate(osThread(rx_cmp_tst_tsk), &(bfdurt_tst_ptr)); osDelay(120); uint32_t lp; cmdprs_init(&cmd_ps_1, 256, &RBFD_UART_GET_UART(urt2), bufed_uart_rcv_1B); uint32_t f_num = 0; size_t n; while(1){ GS_Printf("Input test data length\r\n"); cmdprs_read_1line(cmd_ps_1); char ch; int scn = sscanf((void*)cmd_ps_1->buf->data,"%lu%c", &lp, &ch); if(scn == 2){ if(ch == 'M' || ch == 'm') lp <<= 10U; else if(ch == 'G' || ch == 'g') lp <<= 20U; else if(ch == 'K' || ch == 'k') ; else lp >>= 10U; lp /= (URT_TST_BUF_LEN/1024); }else{ GS_Printf("ERROR\r\n"); break; }

这段代码包含了一些头文件的引用,并定义了一些变量和函数。下面是代码的解释: 1. `#include "cmd_parse.h"` 是一个预处理指令,用于包含头文件 "cmd_parse.h"。 2. `static int bufed_uart_rcv_1B(void *ref, uint8_t *c)` 是一个静态函数,接收一个字节的数据并存储在指针 `c` 指向的位置。它通过调用函数 `bufed_uart_rcv` 来实现。 3. `CMD_PARSE_T *cmd_ps_1;` 声明了一个指向 `CMD_PARSE_T` 类型的指针变量 `cmd_ps_1`。 4. `osThreadId rx_cmp_tst_hd;` 声明了一个 `osThreadId` 类型的变量 `rx_cmp_tst_hd`,用于存储线程的标识符。 5. `extern RNG_HandleTypeDef hrng;` 是一个外部变量的声明,表示 `hrng` 是一个 `RNG_HandleTypeDef` 类型的变量,这个变量在其他地方定义。 6. `void uart1_fast_loopback_test(uint32_t fatfs_ok)` 是一个函数,用于进行 UART1 快速回环测试。它接受一个名为 `fatfs_ok` 的参数。 7. 在函数内部,定义了指向缓冲区的指针 `tx_buf` 和 `rx_buf`,并使用函数 `pvPortMalloc` 分配了内存空间。 8. 进行了内存分配的错误检查,在出现错误时跳转到标签 `err_00`、`err_01` 或 `err_02` 进行错误处理。 9. 分配了一个 `FIL` 结构体的内存空间,并进行了错误检查。 10. 给全局变量 `bfdurt_tst_01` 的成员赋值,包括 `rx_buf`、`tx_buf`、`buf_size` 和 `err_cnt`。 11. 使用循环为 `tx_buf` 数组赋值随机数。 12. 使用 `osThreadDef` 定义了一个线程任务,名为 `rx_cmp_tst_tsk`,并创建了一个线程实例 `rx_cmp_tst_hd`。 13. 使用 `osDelay` 函数进行延迟。 14. 调用函数 `cmdprs_init` 进行命令解析器的初始化,将结果赋值给指针变量 `cmd_ps_1`。 15. 进入一个无限循环,在循环中进行一些输入输出操作和逻辑判断。 总体来说,这段代码主要是用于进行 UART1 快速回环测试,并包含了一些内存分配、线程创建和命令解析的操作。

相关推荐

最新推荐

recommend-type

浅谈int8_t int64_t size_t ssize_t的相关问题(详解)

在编程中,我们经常会遇到各种类型的整数,其中`int8_t`、`int64_t`、`size_t`和`ssize_t`是C++和C语言中用于特定目的的类型别名。这些类型通常在`stdint.h`和`sys/types.h`头文件中定义,旨在提供跨平台的兼容性和...
recommend-type

mysql中find_in_set()函数的使用及in()用法详解

如果 `IN()` 中的值是从其他地方动态获取的,比如一个变量或字段,那么 `IN()` 可能就不再适用,这时应使用 `FIND_IN_SET()`。 另外,`LIKE` 关键字通常用于模式匹配,例如模糊搜索,它与 `IN()` 和 `FIND_IN_SET()...
recommend-type

C语言中getchar()的返回类型为什么是int详解

C语言中getchar()函数的返回类型为什么是int,这是一个常见的问题。在学习C语言时,我们经常遇到这种问题。其实,getchar()函数的返回类型之所以是int,是因为它需要返回EOF(End Of File)标志,以表示文件的结尾。...
recommend-type

C语言中交换int型变量的值及转换为字符数组的方法

在C语言中,有时我们需要对两个整型变量的值进行交换,而不需要引入额外的临时变量。这可以通过一些数学操作来实现,其中最常用的就是异或操作。在给出的示例代码中,展示了如何通过异或操作(^)来交换两个整型变量...
recommend-type

Linux中mkdir函数与Windows中_mkdir函数的区别

这里的`pathname`参数是待创建目录的路径名,而`mode`则是一个整型变量,用于指定新创建目录的权限。`mode`可以设置各种权限,包括文件所有者的读、写、执行权限(S_IRWXU),用户组的读、写、执行权限(S_IRWXG)...
recommend-type

硅水凝胶日戴镜三年影响调查:舒适度提升与角膜变化

本文是一篇深入研究硅水凝胶日戴隐形眼镜对角膜长期影响的论文,由Beata Kettesy等人在2015年发表。标题指出,调查的目标是第二代Lotrafilcon B硅水凝胶(SiH)隐形眼镜在连续三年每日佩戴下的角膜变化。研究对象分为两组:一组是已习惯佩戴传统水凝胶镜片并转用Lotrafilcon B的患者(Group 1,共28人),另一组是初次接触隐形眼镜的新手佩戴者(Group 2,27人)。 研究方法采用主观评价,通过自我报告问卷评估每位患者的眼部舒适度。同时,通过接触式偏振显微镜对角膜进行详细的分析,以测量佩戴Lotrafilcon B SiH隐形眼镜后的不同时间点——即佩戴四周、一个月、六个月、一年、两年和三年后的角膜厚度以及内皮层状况。实验结果显示,Group 1的患者在主观舒适度上有所改善,表明新镜片可能减少了不适感。然而,文章并未详细透露关于角膜具体变化的数据或观察到的长期影响,这可能是为了进一步的临床研究和数据分析。 这篇论文的关键知识点包括: 1. 硅水凝胶隐形眼镜的长期影响:关注了新型Lotrafilcon B材质的隐形眼镜在长时间(三年)日常佩戴后对角膜的影响,这对于隐形眼镜材料的研发和选择具有重要意义,因为它可能影响用户的舒适度和眼睛健康。 2. 分组设计:通过对比现有水凝胶用户和新手用户的体验,研究了适应性因素在舒适度和潜在生理变化中的作用。 3. 角膜参数测量:使用先进的接触式偏振显微镜技术,提供了量化数据来评估角膜的结构变化,这是评估隐形眼镜安全性的重要依据。 4. 舒适度评估:主观问卷的使用反映了用户对新镜片的接受程度,是衡量隐形眼镜质量的重要指标。 5. 结论与未来研究方向:初步的结果表明了积极的趋势,但可能还存在未详述的详细分析或可能的风险,暗示了该领域还有待更深入的研究。 这篇论文提供了关于硅水凝胶隐形眼镜长期佩戴对角膜影响的初步洞察,为隐形眼镜的设计优化和用户指导提供了有价值的数据基础。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

复杂性分析工具自动化指南:解放人力,提升效率

![复杂性分析工具自动化指南:解放人力,提升效率](https://ask.qcloudimg.com/http-save/8934644/afc79812e2ed8d49b04eddfe7f36ae28.png) # 1. 复杂性分析工具概述** 复杂性分析工具是用于评估和管理软件系统复杂性的工具。它们提供了一系列功能,包括: - **代码度量:**计算代码大小、复杂度和可维护性等指标。 - **可视化:**生成代码结构、依赖关系和影响分析图。 - **规则检查:**识别违反最佳实践或编码标准的代码。 这些工具对于理解和管理软件系统复杂性至关重要,有助于提高代码质量、减少维护成本并降低
recommend-type

'uvicorn' 不是内部或外部命令,也不是可运行的程序 或批处理文件。

'uvicorn' 是一个用于运行现代Python web应用程序的高性能异步服务器,特别适用于使用WebSockets、ASGI协议的应用,如FastAPI和Django等。当你在命令行尝试运行 'uvicorn' 但是收到这个错误提示时,这意味着: 1. **不在系统PATH中**:uvicorn未添加到系统的环境变量`PATH`,因此命令行找不到它。你需要将其安装目录添加到系统PATH,或者直接使用全路径运行。 2. **未安装**:你尚未安装 uvicorn,可以使用 `pip install uvicorn` 来安装。 3. **版本问题**:如果已安装,确认你安装的是支持当前
recommend-type

光纤集成布拉格光散射微光谱学:迈向体内布拉格内窥镜

本文主要探讨了纤维集成布拉格光散射微光谱学(Fiber-integrated Brillouin microspectroscopy)在实现布拉格内窥镜(Brillouin endoscopy)方面的潜力与挑战。布拉格成像(Brillouin Imaging, BI)作为一种快速发展的技术,它在微尺度上用于研究组织和生物材料的机械特性,对于疾病的早期诊断具有巨大的应用前景。传统的BI方法虽然理论上适用于活体和现场测量,但在实际应用中,尤其是在医疗领域进行体内检测,例如通过柔性导管到达特定部位,尚未得到广泛报道。 作者们在该研究中首次实验性地探索了将布拉格光散射显微镜与标准光纤组件相结合,以构建出一种布拉格内窥镜系统。他们分别展示了单光纤和双光纤内窥镜的设计和性能评估。然而,文章指出一个关键挑战在于光纤内的强烈后向布拉格散射,这可能会对内窥镜的信号质量和分辨率产生负面影响。解决这个问题对于提升布拉格内窥镜在生物医学领域的实用性和准确性至关重要。 通过集成光纤技术,布拉格内窥镜有望实现对体内微结构的实时、非侵入式探测,这对于肿瘤检测、心血管疾病监测以及组织修复评估等具有显著的意义。此外,优化的光纤设计、信号处理算法以及新型材料的应用可能会进一步提高其灵敏度和空间分辨率,从而推动这一领域向着临床应用迈进一步。 这项研究为布拉格内窥镜技术的未来发展提供了一个重要的里程碑,展示了将其与光纤集成的可能性,并强调了未来研究需要解决的关键技术问题。随着技术的进步,布拉格内窥镜有可能成为医疗诊断工具箱中的一个重要组成部分,对改善人类健康有着深远的影响。