如何使用python爬取天天基金网001475基金评论并计算情绪指标
时间: 2023-11-28 15:05:18 浏览: 113
下面是一个大致的代码示例,供您参考:
```python
import requests
from bs4 import BeautifulSoup
import jieba
import jieba.analyse
import pandas as pd
# 设置请求头信息
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}
# 爬取评论信息
def crawl_comments():
comments = []
for i in range(1, 11): # 爬取前10页评论
url = 'http://fund.eastmoney.com/comments/001475_p{}.html'.format(i)
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
comment_list = soup.select('.cmntslist li')
for comment in comment_list:
content = comment.select_one('.cont').text.strip() # 获取评论内容
comments.append(content)
return comments
# 计算情绪指标
def calculate_sentiment(comments):
jieba.load_userdict("userdict.txt") # 加载自定义词典
sentiments = []
for comment in comments:
words = jieba.lcut(comment)
score = 0
for word in words:
if word in ['估值', '业绩', '收益', '涨幅', '跌幅', '风险']: # 自定义情感词
score += 1
sentiments.append(score)
return sentiments
# 绘制情绪指标图表
def plot_sentiment(sentiments):
df = pd.DataFrame({'sentiment': sentiments})
ax = df.plot(kind='bar', color='blue')
ax.set_xlabel('Comment Index')
ax.set_ylabel('Sentiment Score')
ax.set_title('Sentiment Analysis of Fund 001475 Comments')
plt.show()
if __name__ == '__main__':
comments = crawl_comments()
sentiments = calculate_sentiment(comments)
plot_sentiment(sentiments)
```
在这个示例代码中,crawl_comments()函数使用requests和BeautifulSoup库爬取天天基金网001475基金评论,calculate_sentiment()函数使用jieba库计算每个评论的情绪指标得分,plot_sentiment()函数使用pandas和matplotlib库将情绪指标绘制成图表。需要注意的是,为了提高分词准确率,我们在代码中使用了自定义词典。
希望这个示例代码能够对您有所帮助,如果有任何疑问,请随时向我提问。
阅读全文