写一个gat的图像识别代码
时间: 2024-02-17 16:01:14 浏览: 139
好的,这里是一个简单的GAT图像识别代码示例,使用PyTorch实现:
首先,导入需要的包:
``` python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops, degree
```
定义GATConv层,用于图卷积和消息传递:
``` python
class GATConv(MessagePassing):
def __init__(self, in_channels, out_channels):
super(GATConv, self).__init__(aggr='add')
self.lin = nn.Linear(in_channels, out_channels)
self.att = nn.Linear(2*out_channels, 1)
def forward(self, x, edge_index):
edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0))
x = self.lin(x)
return self.propagate(edge_index, x=x)
def message(self, x_i, x_j, edge_index):
z = torch.cat([x_i, x_j - x_i], dim=-1)
alpha = F.leaky_relu(self.att(z))
alpha = softmax(alpha, edge_index[0])
return x_j * alpha
```
定义GAT模型:
``` python
class GAT(nn.Module):
def __init__(self, in_channels, out_channels, hidden_channels):
super(GAT, self).__init__()
self.conv1 = GATConv(in_channels, hidden_channels)
self.conv2 = GATConv(hidden_channels, out_channels)
def forward(self, x, edge_index):
x = self.conv1(x, edge_index)
x = F.elu(x)
x = F.dropout(x, p=0.5, training=self.training)
x = self.conv2(x, edge_index)
return F.log_softmax(x, dim=1)
```
使用该模型进行图像分类:
``` python
gat = GAT(in_channels, out_channels, hidden_channels).to(device)
optimizer = torch.optim.Adam(gat.parameters(), lr=0.01)
for epoch in range(200):
gat.train()
optimizer.zero_grad()
out = gat(x, edge_index)
loss = F.nll_loss(out[train_mask], y[train_mask])
loss.backward()
optimizer.step()
gat.eval()
_, pred = gat(x, edge_index).max(dim=1)
correct = float(pred[test_mask].eq(y[test_mask]).sum().item())
acc = correct / int(test_mask.sum())
print('Epoch: {:03d}, Loss: {:.4f}, Accuracy: {:.4f}'.format(epoch, loss.item(), acc))
```
以上是一个简单的GAT图像识别代码示例,仅供参考。具体实现需要根据具体情况进行调整和改进。
阅读全文