关联分析——FP-growth算法 C++带类实现及案例
时间: 2023-11-14 13:07:18 浏览: 178
C++实现FP-Growth算法
3星 · 编辑精心推荐
FP-growth算法是一种非常常用的关联分析算法,可以用于挖掘数据集中的频繁项集,进而发现数据集中不同项之间的关联关系。C++作为一种高效的编程语言,也可以用于实现FP-growth算法。
下面是一个基于C++类的FP-growth算法实现及案例示例:
```cpp
#include <iostream>
#include <fstream>
#include <algorithm>
#include <vector>
#include <map>
using namespace std;
class Node {
public:
string name;
int count;
Node* parent;
map<string, Node*> children;
Node() {
name = "";
count = 0;
parent = NULL;
}
Node(string name, int count) {
this->name = name;
this->count = count;
parent = NULL;
}
void inc(int num) {
count += num;
}
};
class FPTree {
public:
Node* root;
map<string, int> headerTable;
FPTree() {
root = new Node();
headerTable.clear();
}
void insert(vector<string>& transaction) {
Node* cur = root;
for (int i = 0; i < transaction.size(); i++) {
string item = transaction[i];
if (cur->children.count(item) == 0) {
cur->children[item] = new Node(item, 1);
cur->children[item]->parent = cur;
if (headerTable.count(item) == 0) {
headerTable[item] = 1;
} else {
headerTable[item]++;
}
} else {
cur->children[item]->count++;
}
cur = cur->children[item];
}
}
};
class FPGrowth {
public:
FPTree* tree;
map<string, int> items;
vector<vector<string>> transactions;
FPGrowth() {
tree = NULL;
}
void loadTransactions(string filename) {
ifstream fin(filename);
if (!fin.is_open()) {
return;
}
string line;
while (getline(fin, line)) {
vector<string> transaction;
string item;
for (int i = 0; i < line.size(); i++) {
if (line[i] == ' ') {
if (items.count(item) == 0) {
items[item] = 1;
} else {
items[item]++;
}
transaction.push_back(item);
item = "";
} else {
item += line[i];
}
}
if (!item.empty()) {
if (items.count(item) == 0) {
items[item] = 1;
} else {
items[item]++;
}
transaction.push_back(item);
}
transactions.push_back(transaction);
}
fin.close();
}
bool cmp(const pair<string, int>& a, const pair<string, int>& b) {
return a.second > b.second;
}
void buildTree() {
tree = new FPTree();
for (int i = 0; i < transactions.size(); i++) {
vector<string>& transaction = transactions[i];
sort(transaction.begin(), transaction.end(), [&](string a, string b) {
return items[a] > items[b];
});
tree->insert(transaction);
}
}
void findPrefixPath(string item, Node* node, vector<Node*>& prefixPath) {
while (node != tree->root) {
if (node->name == item) {
prefixPath.push_back(node);
}
node = node->parent;
}
}
void mineFrequentItemsets(int minSup) {
vector<pair<string, int>> freqItems;
for (auto it = items.begin(); it != items.end(); it++) {
if (it->second >= minSup) {
freqItems.push_back(*it);
}
}
sort(freqItems.begin(), freqItems.end(), cmp);
for (int i = 0; i < freqItems.size(); i++) {
vector<string> prefix;
prefix.push_back(freqItems[i].first);
int sup = freqItems[i].second;
findPrefixPaths(prefix, tree->headerTable, sup);
}
}
void findPrefixPaths(vector<string>& prefix, map<string, Node*> headerTable, int sup) {
string item = prefix[prefix.size() - 1];
Node* node = headerTable[item]->parent;
vector<Node*> prefixPath;
while (node != tree->root) {
prefixPath.clear();
findPrefixPath(item, node, prefixPath);
vector<string> subPrefix;
for (int i = 0; i < prefix.size() - 1; i++) {
subPrefix.push_back(prefix[i]);
}
subPrefix.push_back(node->name);
int count = node->count;
for (int i = 0; i < prefixPath.size(); i++) {
count = min(count, prefixPath[i]->count);
}
if (count >= sup) {
cout << "{";
for (int i = 0; i < subPrefix.size(); i++) {
cout << subPrefix[i] << " ";
}
cout << item << "} : " << count << endl;
findPrefixPaths(subPrefix, node->children, sup);
}
node = node->parent;
}
}
};
int main() {
FPGrowth fpg;
fpg.loadTransactions("transactions.txt");
fpg.buildTree();
fpg.mineFrequentItemsets(2);
return 0;
}
```
上述代码实现了一个基于类的FP-growth算法,并且支持从文件中加载交易数据,并挖掘出频繁项集。其中,`Node`类表示FP树中的节点,`FPTree`类表示FP树,`FPGrowth`类表示FP-growth算法。具体实现细节可以参考代码注释。
需要注意的是,本示例中的实现仅支持从文件中加载交易数据,并不支持在线实时插入交易数据,如果需要支持在线插入数据,需要对代码进行一定的修改。另外,本示例中的实现也没有进行过多的优化,不适用于大型数据集的挖掘。
阅读全文