KNN的C语言代码,要能够读取数据文件
时间: 2023-06-07 17:06:54 浏览: 78
您好,我理解您的问题。以下是一个简单的KNN算法的C语言实现,它可以从数据文件中读取训练数据和测试数据并对其进行分类:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define K 5 // 设置K值为5
typedef struct {
int label; // 样本标签
double* features; // 样本特征
} Sample;
int numFeatures; // 样本特征数
int numSamples; // 样本总数
double euclideanDistance(double* f1, double* f2) {
double dist = 0.0;
for (int i = 0; i < numFeatures; i++)
dist += pow(f1[i] - f2[i], 2);
return sqrt(dist);
}
int classify(Sample* samples, double* testFeatures) {
double distances[numSamples];
for (int i = 0; i < numSamples; i++)
distances[i] = euclideanDistance(samples[i].features, testFeatures);
int indexes[numSamples];
for (int i = 0; i < numSamples; i++)
indexes[i] = i;
for (int i = 1; i < numSamples; i++) {
int keyIndex = indexes[i];
double key = distances[i];
int j = i - 1;
while (j >= 0 && distances[j] > key) {
distances[j + 1] = distances[j];
indexes[j + 1] = indexes[j];
j--;
}
distances[j + 1] = key;
indexes[j + 1] = keyIndex;
}
int freq[numSamples];
for (int i = 0; i < numSamples; i++)
freq[i] = 0;
for (int i = 0; i < K; i++)
freq[samples[indexes[i]].label]++;
int maxFreqIndex = 0;
for (int i = 1; i < numSamples; i++)
if (freq[maxFreqIndex] < freq[i])
maxFreqIndex = i;
return samples[indexes[maxFreqIndex]].label;
}
int main(void) {
char trainFilename[] = "train.csv"; // 训练数据文件
char testFilename[] = "test.csv"; // 测试数据文件
// 读取训练数据
FILE* trainFile = fopen(trainFilename, "r");
fscanf(trainFile, "%d,%d", &numSamples, &numFeatures);
Sample* trainSamples = (Sample*)malloc(numSamples * sizeof(Sample));
for (int i = 0; i < numSamples; i++) {
trainSamples[i].features = (double*)malloc(numFeatures * sizeof(double));
for (int j = 0; j < numFeatures; j++)
fscanf(trainFile, "%lf", &trainSamples[i].features[j]);
fscanf(trainFile, "%d", &trainSamples[i].label);
}
fclose(trainFile);
// 读取测试数据
FILE* testFile = fopen(testFilename, "r");
int numTestSamples;
fscanf(testFile, "%d,%d", &numTestSamples, &numFeatures);
double testFeatures[numFeatures];
for (int i = 0; i < numTestSamples; i++) {
for (int j = 0; j < numFeatures; j++)
fscanf(testFile, "%lf", &testFeatures[j]);
int predictedLabel = classify(trainSamples, testFeatures);
printf("%d\n", predictedLabel);
}
fclose(testFile);
// 释放内存
for (int i = 0; i < numSamples; i++)
free(trainSamples[i].features);
free(trainSamples);
return 0;
}
```
请注意,这只是一个简单的实现,还有很多可以改进的地方。另外,这个实现只能处理数值特征,如果您的数据集包含非数值特征,则需要进行预处理。
阅读全文