a.将表:班内序号表.xlsx另存为CSV文件,注意存储的编码为UTF-8。编程读入该文件,转换成JSON格式文件,并以文件名“班内序号.json”输出。b.编程读入“班内序号.json”,并在屏幕上输出和自己班内序号邻近的5名同学的班内学号、姓名和学号。
时间: 2024-11-28 16:27:33 浏览: 52
a. 首先,你需要使用Python的pandas库来处理Excel文件并将其保存为CSV文件,然后使用json模块将数据转换为JSON。以下是一段示例代码:
```python
import pandas as pd
import json
# 将Excel文件读取为DataFrame
df = pd.read_excel('班内序号表.xlsx', encoding='utf-8')
# 将DataFrame保存为CSV文件,指定编码
df.to_csv('班内序号.csv', index=False, encoding='utf-8')
# 读取CSV文件并转换为字典列表
data_dicts = df.to_dict(orient='records')
# 将字典列表写入JSON文件
with open('班内序号.json', 'w', encoding='utf-8') as f:
json.dump(data_dicts, f, ensure_ascii=False)
# 注意:这里假设原始数据中的每一行代表一个对象,包含'学号'、'姓名'字段
```
b. 接着,为了从JSON文件读取数据并找到与当前班级内的同学相邻的5名同学,你可以创建一个新的函数来完成这个任务。假设我们已经有了一个函数`find_neighbors(json_data, my_student_id)`,它的输入是你刚刚生成的JSON数据和你的学生ID。以下是一个简单的实现:
```python
def find_neighbors(json_data, target_id):
# 假设json_data是一个列表,每个元素是字典,有'student_id', 'name' 和 'class_number'
# 初始化结果列表
neighbors = []
# 搜索前5个比目标ID小的同学(如果有的话)
for i in range(min(5, len(json_data))):
if json_data[i]['student_id'] < target_id and json_data[i]['class_number'] == target_class_number:
neighbors.append(json_data[i])
# 搜索后5个比目标ID大的同学(如果有的话)
for i in reversed(range(len(json_data) - min(5, len(json_data)))):
if json_data[i]['student_id'] > target_id and json_data[i]['class_number'] == target_class_number:
neighbors.append(json_data[i])
return neighbors
# 用你实际的班级ID替换target_class_number
my_student_id = ... # 你的班内序号
neighbors_list = find_neighbors(json.load(open('班内序号.json')), my_student_id)
for neighbor in neighbors_list:
print(f"邻近同学:{neighbor['学号']} {neighbor['姓名']}")
```
请确保在运行上述代码之前,已经正确地导入了所需的库,并且你的`target_class_number`已经被设置为你班级的序列号。
阅读全文
相关推荐


















