SE是空间注意力机制吗
时间: 2023-12-23 10:26:38 浏览: 241
是的,SE(Squeeze-and-Excitation)是一种空间注意力机制,它通过对通道维度进行注意力加权来提高模型的性能。SE注意力机制的核心思想是通过学习每个通道的重要性权重,然后将这些权重应用于通道特征图上,以增强有用的特征并抑制无用的特征。下面是一个使用SE注意力机制的例子:
```python
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, GlobalAveragePooling2D, Reshape, Dense, multiply
def se_block(input_tensor, compress_rate=16):
# 获取输入张量的通道数
channel = input_tensor.shape[-1]
# 压缩通道数
x = GlobalAveragePooling2D()(input_tensor)
x = Dense(channel//compress_rate, activation='relu')(x)
x = Dense(channel, activation='sigmoid')(x)
# 重塑张量形状
x = Reshape((1,1,channel))(x)
# 应用注意力加权
x = multiply([input_tensor, x])
return x
# 创建一个包含SE注意力机制的卷积神经网络
inputs = tf.keras.Input(shape=(224, 224, 3))
x = Conv2D(64, (3, 3), padding='same', activation='relu')(inputs)
x = se_block(x)
x = Conv2D(64, (3, 3), padding='same', activation='relu')(x)
x = se_block(x)
x = Conv2D(64, (3, 3), padding='same', activation='relu')(x)
x = se_block(x)
outputs = Conv2D(1, (1, 1), padding='same', activation='sigmoid')(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
model.summary()
```
阅读全文