~(0x3 << 22)等于多少

时间: 2024-04-19 22:30:28 浏览: 116
`(0x3 << 22)` 表示将二进制数 `11` 左移 22 位,即变为 `1100000000000000000000`。 `~` 运算符用于取反操作,将二进制数的每一位取反。因此,`~(0x3 << 22)` 将 `1100000000000000000000` 的每一位取反,得到 `0011111111111111111111`。 所以,`~(0x3 << 22)` 的结果是 `0x3FFFFF` 或者 `4194303`。
相关问题

优化代码,uint32_t temp = 0;temp = (temp & (~(0x3 << 22))) | (1 << 22);

你可以优化这段代码,将位操作合并为一行,如下所示: ```cpp uint32_t temp = 0; temp = (temp & ~(0x3 << 22)) | (1 << 22); ``` 这样就可以同时进行位清除和位设置操作。首先,`temp & ~(0x3 << 22)` 将 `temp` 的第 22 和 23 位清零,然后 `(1 << 22)` 将第 22 位设置为 1,最后通过按位或运算符 `|` 将两者合并到 `temp` 中。

/* * T1_T2_T3_2023_1.c * * Created: 2023/5/30 22:49:53 * Author : XY */ #include <avr/io.h> #include <avr/interrupt.h> #include <avr/sleep.h> void device_init(void) { DDRD |= 0xf0; PORTD &= 0x0f; DDRB |= (_BV(PB4)|_BV(PB6)); DDRE |= _BV(PE7); } void timer1_init(void) { TCCR1B = 0x00; //stop OCR1AH = 0x3D; //TOP of T1 OCR1AL = 0x08; OCR1BH = 0x3D; OCR1BL = 0x08; TCCR1A = 0x10; TCCR1C = 0x00; TCCR1B = 0x0B; //start Timer } void timer2_init(void) { TCCR2B = 0x00; //stop ASSR = 0x20; //set async mode OCR2A = 0x80; TCCR2A = 0x42; TCCR2B = 0x06; //start } void timer3_init(void) { TCCR3B = 0x00; //stop OCR3AH = 0x3D; OCR3AL = 0x08; TCCR3A = 0x00; TCCR3C = 0x00; TCCR3B = 0x0B; //start Timer } ISR(TIMER3_COMPA_vect) { PORTE ^= _BV(PE7); } int main(void) { device_init(); timer1_init(); timer2_init(); timer3_init(); TIMSK3 = 0x02; sei(); while (1) { SMCR |= (0x00<<SM0); sleep_mode(); } } 根据程序中 T1、T2、T3 的配置参数(包括工作模式、分频系数、初值),通过更改SMCR |= (0x00<<SM0)为SMCR |= (0x03<<SM0)和SMCR |= (0x03<<SM0)来分析三个定时器驱动 LED 灯的方式有何区别

在程序中,更改 SMCR |= (0x00<<SM0) 为 SMCR |= (0x03<<SM0) 和 SMCR |= (0x03<<SM0) 是重复的,应该是一个打印错误。 如果将 SMCR |= (0x03<<SM0) 用于程序中,即将 ATmega128A 进入 Power-save 模式,此模式下只关闭了 CPU 的时钟,其他模块继续工作,外部中断和定时器中断都能唤醒 MCU。因此,定时器和 LED 灯都能继续工作,但因为 CPU 时钟停止,程序中的 while(1) 语句也无法执行,即程序无法继续运行。 如果将 SMCR |= (0x02<<SM0) 用于程序中,即将 ATmega128A 进入 Idle 模式,此模式下仅关闭了 CPU,其他模块继续工作。因此,定时器和 LED 灯也能继续工作,同时程序中的 while(1) 语句能够执行,即程序能够继续运行。 因此,将 ATmega128A 进入 Power-save 模式和 Idle 模式的区别在于,前者会关闭 CPU 的时钟,程序无法继续运行;而后者仅关闭 CPU,程序能够继续运行。

相关推荐

阅读以下资料,请编写五个函数完成LED6的接口初始化,LED6的点亮和熄灭操作。假设定时器时钟源PCLK频率为200MHz,请用6818芯片定时器2进行计时,并用中断的方式完成LED6(亮1秒)-(灭1秒)-(亮1秒)的循环状态指示程序。  (1)完成LED初始化函数 void led_init(void) {                               ;} (2)完成led点亮函数 void led_on(void) {                         ;  } (3)完成led熄灭函数 void led_off(void) {                         ;; }   (4)完成定时器1初始化函数 void Timer_init(void) { // 1. Timer1,作定时器中断 // 2. 设置一级预分频值,设置TIMER0通道,设置TCFG0[7:0]位,设置为199      //f = 200M / (199+1) = 2MHz TCFG0 =                         ; // 3. 设置二级与分频值,设置TCFG1[3:80]位,设置为0100,进行16分频 //f =2MHz / 16 =125KHz TCFG1 =                        ;; // 4. 设置PTIMER1的最终周期1S,设置TCNTB1, 设置125000 TCNTB1 =                         ;   // // 6. 打开手动加载 TCON =                  // 7. 关闭手动加载 TCON = ; // 8. 打开自动加载 TCON = ; TINT_CSTAT ; // 9. 使能TIMER定时器 TCON = ; } (5)完成中断处理函数 Int led_flag =0; void do_irq(void) { unsigned int num_irq; static unsigned int irq_cnt=0; num_irq = ;// 获取中断号 if(num_irq == ) {//补充代码 } GICC_EOIR = GICC_EOIR & (~(0x3FF << 0)) | num_irq;// 清除所有中断 }

#include <Adafruit_I2CDevice.h> #define DRV2605_ADDR 0x5A ///< Device I2C address #define DRV2605_REG_STATUS 0x00 ///< Status register #define DRV2605_REG_MODE 0x01 ///< Mode register #define DRV2605_MODE_INTTRIG 0x00 ///< Internal trigger mode #define DRV2605_MODE_EXTTRIGEDGE 0x01 ///< External edge trigger mode #define DRV2605_MODE_EXTTRIGLVL 0x02 ///< External level trigger mode #define DRV2605_MODE_PWMANALOG 0x03 ///< PWM/Analog input mode #define DRV2605_MODE_AUDIOVIBE 0x04 ///< Audio-to-vibe mode #define DRV2605_MODE_REALTIME 0x05 ///< Real-time playback (RTP) mode #define DRV2605_MODE_DIAGNOS 0x06 ///< Diagnostics mode #define DRV2605_MODE_AUTOCAL 0x07 ///< Auto calibration mode #define DRV2605_REG_RTPIN 0x02 ///< Real-time playback input register #define DRV2605_REG_LIBRARY 0x03 ///< Waveform library selection register #define DRV2605_REG_WAVESEQ1 0x04 ///< Waveform sequence register 1 #define DRV2605_REG_WAVESEQ2 0x05 ///< Waveform sequence register 2 #define DRV2605_REG_WAVESEQ3 0x06 ///< Waveform sequence register 3 #define DRV2605_REG_WAVESEQ4 0x07 ///< Waveform sequence register 4 #define DRV2605_REG_WAVESEQ5 0x08 ///< Waveform sequence register 5 #define DRV2605_REG_WAVESEQ6 0x09 ///< Waveform sequence register 6 #define DRV2605_REG_WAVESEQ7 0x0A ///< Waveform sequence register 7 #define DRV2605_REG_WAVESEQ8 0x0B ///< Waveform sequence register 8 #define DRV2605_REG_GO 0x0C ///< Go register #define DRV2605_REG_OVERDRIVE 0x0D ///< Overdrive time offset register #define DRV2605_REG_SUSTAINPOS 0x0E ///< Sustain time offset, positive register #define DRV2605_REG_SUSTAINNEG 0x0F ///< Sustain time offset, negative register #define DRV2605_REG_BREAK 0x10 ///< Brake time offset register #define DRV2605_REG_AUDIOCTRL 0x11 ///< Audio-to-vibe control register #define DRV2605_REG_AUDIOLVL \ 0x12 ///< Audio-to-vibe minimum input level register #define DRV2605_REG_AUDIOMAX \ 0x13 ///< Audio-to-vibe maximum input level register #define DRV2605_REG_AUDIOOUTMIN \ 0x14 ///< Audio-to-vibe minimum output drive register #define DRV2605_REG_AUDIOOUTMAX \ 0x15 ///< Audio-to-vibe maximum output drive register #define DRV2605_REG_RATEDV 0x16 ///< Rated voltage register #define DRV2605_REG_CLAMPV 0x17 ///< Overdrive clamp voltage register #define DRV2605_REG_AUTOCALCOMP \ 0x18 ///< Auto-calibration compensation result register #define DRV2605_REG_AUTOCALEMP \ 0x19 ///< Auto-calibration back-EMF result register #define DRV2605_REG_FEEDBACK 0x1A ///< Feedback control register #define DRV2605_REG_CONTROL1 0x1B ///< Control1 Register #define DRV2605_REG_CONTROL2 0x1C ///< Control2 Register #define DRV2605_REG_CONTROL3 0x1D ///< Control3 Register #define DRV2605_REG_CONTROL4 0x1E ///< Control4 Register #define DRV2605_REG_VBAT 0x21 ///< Vbat voltage-monitor register #define DRV2605_REG_LRARESON 0x22 ///< LRA resonance-period register

char code dx516[3] _at_ 0x003b; unsigned char code up[ ]= { 0x00,0x40,0x40,0x7E,0x40,0x40,0x00,0x00,//t 0x00,0x00,0x31,0x49,0x49,0x46,0x00,0x00,//s 0x00,0x1c,0x2A,0x2A,0x2A,0x12,0x00,0x00,//e 0x00,0x40,0x40,0x7E,0x40,0x40,0x00,0x00,//t 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//空格 0x00,0x00,0x00,0x7C,0x02,0x02,0x00,0x00,//1 0x00,0x24,0x4A,0x52,0x52,0x3E,0x02,0x00,//a 0x00,0x00,0x3E,0x40,0x40,0x3E,0x00,0x00,//n 0x00,0x00,0x00,0x5E,0x5E,0x00,0x00,0x00,//i 0x00,0x00,0x7E,0x48,0x48,0x48,0x00,0x00,//F 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//空格 0x00,0x7c,0x02,0x02,0x02,0x02,0x7c,0x00,//u 0x00,0x3C,0x42,0x81,0x81,0x81,0x42,0x00,//C 0x00,0x7E,0x40,0x20,0x1E,0x20,0x40,0x7E,//M 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//空格 0x00,0x7c,0x02,0x02,0x02,0x02,0x7c,0x00,//u 0x00,0x7E,0x52,0x52,0x52,0x2C,0x00,0x00,//B 0x00,0x40,0x40,0x7E,0x40,0x40,0x00,0x00,//t 0x00,0x3C,0x42,0x81,0x81,0x81,0x42,0x00,//C 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00//空格 }; unsigned char code down[]= { 0x00,0x00,0x44,0x4C,0x64,0x44,0x00,0x00,//z 0x00,0x1c,0x22,0x22,0x22,0x1c,0x00,0x00,//o 0x00,0x7c,0x02,0x02,0x02,0x02,0x7c,0x00,//u 0x00,0x00,0x31,0x49,0x49,0x46,0x00,0x00,//s 0x00,0x00,0x7E,0x10,0x10,0x0E,0x00,0x00,//h 0x00,0x7c,0x02,0x02,0x02,0x02,0x7c,0x00,//u 0x00,0x24,0x4A,0x52,0x52,0x3E,0x02,0x00,//a 0x00,0x00,0x3E,0x40,0x40,0x3E,0x00,0x00,//n 0x00,0x00,0x32,0x49,0x49,0x3E,0x00,0x00,//g 0x00,0x00,0x30,0x48,0x48,0x3F,0x00,0x00,//q 0x00,0x00,0x00,0x5E,0x5E,0x00,0x00,0x00,//i 0x00,0x00,0x3E,0x40,0x40,0x3E,0x00,0x00,//n 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//空格 0x00,0x00,0x22,0x46,0x4A,0x32,0x00,0x00,//2 0x00,0x00,0x3C,0x42,0x42,0x3C,0x00,0x00,//0 0x00,0x00,0x22,0x46,0x4A,0x32,0x00,0x00,//2 0x00,0x00,0x22,0x7E,0x02,0x00,0x00,0x00,//1 0x00,0x00,0x78,0x08,0x7E,0x08,0x00,0x00,//4 0x00,0x00,0x22,0x7E,0x02,0x00,0x00,0x00,//1 0x00,0x00,0x22,0x49,0x49,0x3E,0x00,0x00,//3 0x00,0x00,0x3C,0x42,0x42,0x3C,0x00,0x00,//0 0x00,0x00,0x3C,0x42,0x42,0x3C,0x00,0x00,//0 0x00,0x00,0x22,0x46,0x4A,0x32,0x00,0x00,//2 0x00,0x00,0什么意思

#include <iom16v.h> #include <macros.h> unsigned int time1,time2,all_time=1,stop=0,i=0,flag=1; unsigned char num[]={0x7e,0x30,0x5b,0x7b,0x3d,0x6d,0x5f,0x77,0x4f,0x79}; unsigned int a=1; unsigned int aw=0; void port_init(void) { DDRB = (1<<PB4) | (1<<PB5) | (1<<PB7); PORTD|=0xFF; DDRB=0xF0; PORTB=0xF0; } void init_devices(void) { CLI(); UCSRB=0x00; UCSRC=0x86; UBRRL=25; UBRRH=0x00; UCSRB=0x98; SEI(); } void init_max7219(void) { send_max7219(0x0c,0x01); send_max7219(0x0f,0x00); send_max7219(0x09,0x0f); send_max7219(0x0b,0x03); send_max7219(0x0a,0x04); } void send_max7219(unsigned char address,unsigned char data) { PORTB&=~(1<<PB4); SPI_MasterTransmit(address); SPI_MasterTransmit(data); PORTB|=(1<<PB4); } void SPI_MasterTransmit(unsigned char cData) { unsigned char tmp; PORTB&=(1<<PB7); tmp=SPSR; SPDR=cData; while(!(SPSR&(1<<SPIF))); } #pragma interrupt_handler timer1_compa_isr:20 void timer1_compa_isr(void) { i++; if(i%200==0) { a++; } if(a==9999) { a=0; } } #pragma interrupt_handler ext_int1_isr:3 void ext_int1_isr(void) { switch (aw) { case 0: TCCR0=0b00001000; aw=1; break; case 1: TCCR0=0b00001101; aw=0; break; } } void main(void) { unsigned int b,c,d,e; port_init(); SPCR=(1<<MSTR)|(1<<SPE)|(1<<SPR0); init_devices(); init_max7219(); TCCR0=0b00001000; OCR0=0b00000100; TIMSK=0b00000010; MCUCR=0x0A; GICR|=0xC0; send_max7219(1,0); send_max7219(2,0); send_max7219(3,0); send_max7219(4,0); TCCR0=0b00001101; while (1) { if(i%200==0) { send_max7219(4,e=a/1000); send_max7219(3,d=((a-e*1000)/100)); send_max7219(2,c=((a-e*1000-d*100)/10)); send_max7219(1,b=a%10); } } }每行代码的作用

最新推荐

recommend-type

怎么拼接中间有0x00符的字符串(数组)

char Mac_To_Mac_Com_1[7] = {0xFE, 0x00, 0x11, 0x22, 0x33, 0x44, 0x00}; char Mac_To_Mac_Com_2[5] = {0x01, 0x11, 0x01, 0x00, 0x02}; char Mac_To_Mac_Com_3[3] = {0x88, 0x99, 0xFA}; // 拼接Mac_To_Mac_...
recommend-type

TDC_GP22寄存器设置方法.docx

3. 测量初始化 0x704 寄存器配置: 4.1 寄存器0配置 0x43CBE800 * 设置fire端口的脉冲数为20个,寄存器5中的PHFIRE正反向设置无效 * 设置内部时钟产生的分频因数,DIV_FIRE=3,4分频,时钟为4M,脉冲频率1M * ...
recommend-type

HAL3900 设置3D测量模式

然后,执行单地址写入指令,向0x75寄存器写入0x6D5A,并再次检查0x75寄存器的值。最后,通过向0x75寄存器写入0x06来执行复位操作,确保所有设置生效。 为了验证设置是否正确,复位后,需要重新进入编程模式并读取...
recommend-type

深入剖析Oracle与MySQL在事务处理上的差异

在数据库管理系统中,事务处理是确保数据一致性和完整性的关键机制。Oracle和MySQL作为两大主流的数据库系统,在事务处理方面有着各自的特点和差异。本文将从事务的基本概念、隔离级别、锁机制以及事务控制语句等方面,详细探讨Oracle与MySQL在事务处理上的差异,并提供代码示例。 Oracle和MySQL在事务处理上有着各自的特点。Oracle提供了强大的并发控制和隔离级别管理,适合处理复杂的企业级事务。MySQL则以其简单性和灵活性,在Web应用和中小型项目中广泛使用。了解这些差异对于开发者选择合适的数据库系统以及优化事务处理至关重要。通过本文的分析和代码示例,读者应该能够更深入地理解Oracle与MySQL在事务处理上的差异,并在实际应用中做出更合适的选择。
recommend-type

电力系统稳态分析-考研必备

电力系统分析经典教材资料
recommend-type

Unity UGUI性能优化实战:UGUI_BatchDemo示例

资源摘要信息:"Unity UGUI 性能优化 示例工程" 知识点: 1. Unity UGUI概述:UGUI是Unity的用户界面系统,提供了一套完整的UI组件来创建HUD和交互式的菜单系统。与传统的渲染相比,UGUI采用基于画布(Canvas)的方式来组织UI元素,通过自动的布局系统和事件系统来管理UI的更新和交互。 2. UGUI性能优化的重要性:在游戏开发过程中,用户界面通常是一个持续活跃的系统,它会频繁地更新显示内容。如果UI性能不佳,会导致游戏运行卡顿,影响用户体验。因此,针对UGUI进行性能优化是保证游戏流畅运行的关键步骤。 3. 常见的UGUI性能瓶颈:UGUI性能问题通常出现在以下几个方面: - 高数量的UI元素更新导致CPU负担加重。 - 画布渲染的过度绘制(Overdraw),即屏幕上的像素被多次绘制。 - UI元素没有正确使用批处理(Batching),导致过多的Draw Call。 - 动态创建和销毁UI元素造成内存问题。 - 纹理资源管理不当,造成不必要的内存占用和加载时间。 4. 本示例工程的目的:本示例工程旨在展示如何通过一系列技术和方法对Unity UGUI进行性能优化,从而提高游戏运行效率,改善玩家体验。 5. UGUI性能优化技巧: - 重用UI元素:通过将不需要变化的UI元素实例化一次,并在需要时激活或停用,来避免重复创建和销毁,降低GC(垃圾回收)的压力。 - 降低Draw Call:启用Canvas的Static Batching特性,把相同材质的UI元素合并到同一个Draw Call中。同时,合理设置UI元素的Render Mode,比如使用Screen Space - Camera模式来减少不必要的渲染负担。 - 避免过度绘制:在布局设计时考虑元素的层级关系,使用遮挡关系减少渲染区域,尽量不使用全屏元素。 - 合理使用材质和纹理:将多个小的UI纹理合并到一张大的图集中,减少纹理的使用数量。对于静态元素,使用压缩过的不透明纹理,并且关闭纹理的alpha测试。 - 动态字体管理:对于动态生成的文本,使用UGUI的Text组件时,如果字体内容不变,可以缓存字体制作的结果,避免重复字体生成的开销。 - Profiler工具的使用:利用Unity Profiler工具来监控UI渲染的性能瓶颈,通过分析CPU和GPU的使用情况,准确地找到优化的切入点。 6. 示例工程结构:示例工程应该包含多种UGUI使用场景,包括但不限于按钮点击、滚动列表、动态文本显示等,以展示在不同情况下优化技巧的应用。 7. 本示例工程包含的文件列表说明:UGUI_BatchDemo可能是一个预设的场景或者一系列预制件,这些文件展示了优化后的UGUI实践,用户可以通过实际运行这些预制件和场景来学习和理解性能优化的原理和效果。 通过深入学习和应用本示例工程中提供的各种优化技术和方法,开发者能够更好地掌握如何在实际项目中对UGUI进行优化,从而在保证用户体验的同时,提升游戏的运行效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【Twisted Python高级教程】:3小时打造高性能网络服务

![【Twisted Python高级教程】:3小时打造高性能网络服务](https://img-blog.csdnimg.cn/5093feab42874bdeb39ac8af1dd1c38a.png) # 1. Twisted Python概述与安装配置 ## 1.1 什么是Twisted Python Twisted是一个以事件驱动为核心的Python网络框架,支持广泛的网络协议。它特别适合开发高性能、长时间运行的网络服务。Twisted的独特之处在于其异步编程模型,它能够处理成千上万的连接,而不必为每个连接分配一个线程。 ## 1.2 安装Twisted 为了安装Twisted
recommend-type

当函数名字是void时,函数内部想要结束时不能return 0应该怎么办

当C++函数返回类型为`void`时,这意味着函数不直接返回任何值。在这种情况下,如果你想要表示函数执行完毕或者成功完成,通常不会使用`return 0`这样的语句。因为`return`关键字用于返回值给调用者,而在`void`函数中没有实际返回值。 相反,你可以选择以下几种方式来表示函数执行的完成或状态: 1. **无返回值**:如果函数确实完成了所有操作并且不需要通知调用者任何信息,就简单地让函数体结束即可,无需特别处理。 ```cpp void myFunction() { // 函数体内的代码 // ... // 没有 return 语句 } ``` 2
recommend-type

Java实现小游戏飞翔的小鸟教程分享

资源摘要信息:"小游戏飞翔的小鸟(Java实现)" 本资源为一个以Java语言实现的简单小游戏项目,名为“飞翔的小鸟”,主要面向Java初学者提供学习与实践的机会。此项目通过构建一个互动性强的小游戏,不仅能够帮助初学者理解和掌握Java编程的基本知识,还能够增进其对游戏开发流程的理解。通过分析项目中的源代码以及游戏的设计思路,初学者将能够学习到Java编程的基本语法、面向对象编程思想、以及简单的游戏逻辑实现。 该项目采用了Java编程语言进行开发,因此对于想要学习Java的初学者来说,是一个很好的实践项目。在项目中,初学者将接触到Java的基本语法结构,如变量定义、条件判断、循环控制、方法定义等。通过阅读和理解代码,学习者可以了解如何使用Java来创建类和对象,以及如何利用继承、封装、多态等面向对象的特性来构建游戏中的角色和功能模块。 此外,本项目还涉及到了游戏开发中的一些基本概念,例如游戏循环、事件处理、碰撞检测等。在“飞翔的小鸟”游戏中,玩家需要控制一只小鸟在屏幕上飞翔,避免撞到障碍物。学习者可以从中学习到如何使用Java图形用户界面(GUI)编程,例如通过Swing或JavaFX框架来设计和实现游戏界面。同时,项目中可能还会涉及到游戏物理引擎的简单应用,比如重力和碰撞的模拟,这些都是游戏开发中的重要概念。 由于项目描述中未提供具体的文件列表信息,无法进一步分析项目的细节。不过,通过文件名称“0797”我们无法得知具体的项目内容,这可能是一个版本号、项目编号或是其他标识符。在实际学习过程中,初学者应当下载完整的项目文件,包括源代码、资源文件和文档说明,以便完整地理解和学习整个项目。 总之,对于Java初学者来说,“飞翔的小鸟”项目是一个很好的学习资源。通过项目实践,学习者可以加深对Java语言的理解,熟悉面向对象编程,以及探索游戏开发的基础知识。同时,该项目也鼓励学习者将理论知识应用于实际问题的解决中,从而提高编程能力和解决实际问题的能力。欢迎广大初学者下载使用,并在实践中不断提高自己的技术水平。