def forward(self, x, g): rem = x k1, k2, k3, k4 = torch.split(g, (x.size()[1]*5, x.size()[1]*5, x.size()[1]*5, x.size()[1]*5), 1) k1 = F.normalize(k1.view(x.size()[0], x.size()[1], 5, x.size()[3], x.size()[4]), p=1, dim=2) k2 = F.normalize(k2.view(x.size()[0], x.size()[1], 5, x.size()[3], x.size()[4]), p=1, dim=2) k3 = F.normalize(k3.view(x.size()[0], x.size()[1], 5, x.size()[3], x.size()[4]), p=1, dim=2) k4 = F.normalize(k4.view(x.size()[0], x.size()[1], 5, x.size()[3], x.size()[4]), p=1, dim=2) x = self.SGA(x, k1, k2, k3, k4) if self.refine: x = self.bn_relu(x) x = self.conv_refine(x) else: x = self.bn(x) assert(x.size() == rem.size()) x += rem return self.relu(x)
时间: 2023-10-20 22:22:49 浏览: 151
该模块的 forward 方法接受两个输入:x 表示输入特征图,g 表示用于计算空间注意力权重的向量。在方法中,首先将输入的特征图 x 保存到 rem 变量中,然后将 g 向量按通道分成四份,并对每份向量进行 L1 归一化。接着,将归一化后的四个向量作为参数传给 SGA 模块,用于计算加权聚合后的特征图。如果 refine 参数为 True,则对加权聚合后的特征图进行一些卷积操作,否则直接对其进行 BatchNorm3d 操作。最后,将加权聚合后的特征图和输入的特征图 rem 相加,并通过 relu 激活函数输出。
相关问题
class SGABlock(nn.Module): def __init__(self, channels=32, refine=False): super(SGABlock, self).__init__() self.refine = refine if self.refine: self.bn_relu = nn.Sequential(BatchNorm3d(channels), nn.ReLU(inplace=True)) self.conv_refine = BasicConv(channels, channels, is_3d=True, kernel_size=3, padding=1, relu=False) # self.conv_refine1 = BasicConv(8, 8, is_3d=True, kernel_size=1, padding=1) else: self.bn = BatchNorm3d(channels) self.SGA=SGA() self.relu = nn.ReLU(inplace=True) def forward(self, x, g): rem = x k1, k2, k3, k4 = torch.split(g, (x.size()[1]*5, x.size()[1]*5, x.size()[1]*5, x.size()[1]*5), 1) k1 = F.normalize(k1.view(x.size()[0], x.size()[1], 5, x.size()[3], x.size()[4]), p=1, dim=2) k2 = F.normalize(k2.view(x.size()[0], x.size()[1], 5, x.size()[3], x.size()[4]), p=1, dim=2) k3 = F.normalize(k3.view(x.size()[0], x.size()[1], 5, x.size()[3], x.size()[4]), p=1, dim=2) k4 = F.normalize(k4.view(x.size()[0], x.size()[1], 5, x.size()[3], x.size()[4]), p=1, dim=2) x = self.SGA(x, k1, k2, k3, k4) if self.refine: x = self.bn_relu(x) x = self.conv_refine(x) else: x = self.bn(x) assert(x.size() == rem.size()) x += rem return self.relu(x) # return self.bn_relu(x)
这是一个使用了 SGA(Spatial Group-wise Aggregation)的神经网络模块,用于图像处理任务。SGA 是一种空间注意力机制,能够对输入特征图进行加权聚合,从而更好地捕捉不同位置的上下文信息。该模块接受两个输入:x 表示输入特征图,g 表示用于计算空间注意力权重的向量。模块首先将 g 向量按通道分成四份,再对每份向量进行 L1 归一化,最后将这四个归一化后的向量作为空间注意力的输入,输出加权聚合后的特征图。如果 refine 参数为 True,则模块会在空间注意力之后再进行一些卷积操作。
rem = x k1, k2, k3, k4 = torch.split(g, (x.size()[1]*5, x.size()[1]*5, x.size()[1]*5, x.size()[1]*5), 1) k1 = F.normalize(k1.view(x.size()[0], x.size()[1], 5, x.size()[3], x.size()[4]), p=1, dim=2) k2 = F.normalize(k2.view(x.size()[0], x.size()[1], 5, x.size()[3], x.size()[4]), p=1, dim=2) k3 = F.normalize(k3.view(x.size()[0], x.size()[1], 5, x.size()[3], x.size()[4]), p=1, dim=2) k4 = F.normalize(k4.view(x.size()[0], x.size()[1], 5, x.size()[3], x.size()[4]), p=1, dim=2) x = self.SGA(x, k1, k2, k3, k4)
这段代码可能是某个神经网络模型的一部分。首先,将变量x的值赋给变量rem。然后,将变量g沿着第1个维度分成4个大小为x.size()[1]*5的张量k1, k2, k3和k4。接下来,对这4个张量进行归一化处理,使用了PyTorch中的F.normalize函数,其中p=1表示使用L1范数进行归一化,dim=2表示沿着第2个维度进行归一化。最后,将变量x、k1、k2、k3和k4作为输入,调用self.SGA函数进行处理。SGA可能是某个自定义的函数,因为这段代码没有提供SGA函数的实现。
阅读全文