import torch from torch import nn import d2l net = nn.Sequential( nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2), nn.Flatten(), nn.Linear(6400, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, 10)) X = torch.randn((1, 3, 224, 224),dtype=torch.float32) for layer in net: X=layer(X) print(layer.__class__.__name__,'output shape:\t',X.shape) batch_size = 32 train_iter, test_iter = d2l.load_data_cifar10(batch_size, resize=224) lr, num_epochs = 0.01, 70 d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu()),其中batch_size改为64或把resize改成96会提高准确率吗?
时间: 2023-09-17 21:13:40 浏览: 71
将batch_size从32改为64有可能提高准确率,因为使用更大的batch_size会使模型在每个epoch中看到更多的数据,进而提高模型的泛化能力。
将resize从224改为96可能会降低准确率,因为使用更小的图片尺寸会损失一定的信息量,降低模型的表达能力,进而影响模型的准确率。但是如果使用96大小的图片可以减少训练时间和内存占用,适用于一些计算资源比较有限的场景。
相关问题
import torch.nn as nn num_classes = 131 class FruitsClassificationModel(nn.Module): def __init__(self): super(FruitsClassificationModel, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=32), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer2 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=64), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer3 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=128, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=128), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.fc = nn.Linear(in_features=18432, out_features=num_classes)
这段代码定义了一个卷积神经网络模型,用于水果图片的分类任务。该模型包含三个卷积层和一个全连接层,其中每个卷积层后面都跟着一个BatchNorm层和ReLU激活函数,然后是一个最大池化层,用于下采样。最后通过一个全连接层将卷积层输出的feature map映射到类别上。其中,输入图片是3通道的,输出类别数为131个。
class GhostModule(nn.Module): def __init__(self, input_channels, output_channels, kernel_size=1, ratio=2): super(GhostModule, self).__init__() self.output_channels = output_channels self.hidden_channels = output_channels // ratio self.primary_conv = nn.Sequential( nn.Conv2d(input_channels, self.hidden_channels, kernel_size, bias=False), nn.BatchNorm2d(self.hidden_channels), nn.ReLU(inplace=True) ) self.cheap_operation = nn.Sequential( nn.Conv2d(self.hidden_channels, self.hidden_channels, kernel_size, groups=self.hidden_channels, bias=False), nn.BatchNorm2d(self.hidden_channels), nn.ReLU(inplace=True) ) self.secondary_conv = nn.Sequential( nn.Conv2d(self.hidden_channels, self.output_channels - self.hidden_channels, kernel_size, bias=False), nn.BatchNorm2d(self.output_channels - self.hidden_channels) ) def forward(self, x): x1 = self.primary_conv(x) x2 = self.cheap_operation(x1) x3 = self.secondary_conv(torch.cat([x1, x2], dim=1)) return torch.cat([x1, x3], dim=1)
这是一个 PyTorch 的神经网络模块,该模块名为 GhostModule。该模块包含三个卷积层:主要卷积层、廉价卷积操作和次要卷积层。其中主要卷积层是一个标准的卷积操作,廉价卷积操作是一种深度可分离卷积,次要卷积层是一个标准的卷积操作。这个模块的目的是在减少计算成本的同时保持模型的准确性。你有没有其他问题呢?
阅读全文