public Point2d RefineSubPixel(Mat image, Point2d lower, Point2d upper) { // 提取感兴趣区域 Rect roiRect = new Rect((int)lower.X, (int)lower.Y, (int)(upper.X - lower.X), (int)(upper.Y - lower.Y)); Mat roi = new Mat(image, roiRect); // 初始化初始点 Point2d refinedPoint = new Point2d(roi.Cols / 2.0, roi.Rows / 2.0); // 定义优化终止标准 var termCriteria = new TermCriteria(CriteriaTypes.MaxIter | CriteriaTypes.Eps, 20, 0.03); // 执行优化迭代 if (roi.Width > 1 && roi.Height > 1) { // 预处理 var grayRoi = new Mat(); Cv2.PyrMeanShiftFiltering(roi, roi, 2, 2); Cv2.CvtColor(roi, grayRoi, ColorConversionCodes.BGR2GRAY); Cv2.Threshold(grayRoi, grayRoi, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu); // 迭代更新点坐标 var delta = new Point2d(); var point = new Point2d(refinedPoint.X, refinedPoint.Y); var bestPoint = new Point2d(refinedPoint.X, refinedPoint.Y); var width = image.Cols; var height = image.Rows; var targetGray = grayRoi.At<byte>((int)point.Y, (int)point.X); var minError = double.MaxValue; var precision = 1e-6; for (int i = 0; i < termCriteria.MaxCount; i++) { int x = (int)Math.Round(point.X); int y = (int)Math.Round(point.Y); if (x <= 0 || y <= 0 || x >= grayRoi.Cols - 1 || y >= grayRoi.Rows - 1) { break; } // 计算当前点周围的梯度信息 var derivX = (grayRoi.At<byte>(y, x + 1) - grayRoi.At<byte>(y, x - 1)) / 2.0; var derivY = (grayRoi.At<byte>(y + 1, x) - grayRoi.At<byte>(y - 1, x)) / 2.0; var hessian = new Mat(2, 2, MatType.CV_64F); hessian.Set<double>(0, 0, grayRoi.At<byte>(y, x + 1) + grayRoi.At<byte>(y, x - 1) - 2 * grayRoi.At<byte>(y, x)); hessian.Set<double>(0, 1, (grayRoi.At<byte>(y + 1, x + 1) - grayRoi.At<byte>(y + 1, x - 1) - grayRoi.At<byte>(y - 1, x + 1) + grayRoi.At<byte>(y - 1, x - 1)) / 4.0); hessian.Set<double>(1, 0, hessian.At<double>(0, 1)); hessian.Set<double>(1, 1, grayRoi.At<byte请完善代码
时间: 2024-04-28 13:22:35 浏览: 141
>(y + 1, x) + grayRoi.At<byte>(y - 1, x) - 2 * grayRoi.At<byte>(y, x)); // 求解线性方程组,更新点坐标 var deltaMat = new Mat(2, 1, MatType.CV_64F); deltaMat.Set<double>(0, 0, derivX); deltaMat.Set<double>(1, 0, derivY); var hessianInv = hessian.Inv(); var deltaPoint = hessianInv * deltaMat; delta.X = deltaPoint.At<double>(0, 0); delta.Y = deltaPoint.At<double>(1, 0); point -= delta; point.X = Math.Max(Math.Min(point.X, roi.Cols - 1), 0); point.Y = Math.Max(Math.Min(point.Y, roi.Rows - 1), 0); // 判断是否收敛 var currentGray = grayRoi.At<byte>((int)point.Y, (int)point.X); if (Math.Abs(currentGray - targetGray) < minError) { minError = Math.Abs(currentGray - targetGray); bestPoint = new Point2d(point.X, point.Y); } if (Math.Sqrt(delta.X * delta.X + delta.Y * delta.Y) < precision) { break; } } refinedPoint = bestPoint + new Point2d(lower.X, lower.Y); } return refinedPoint; }
这段代码是用于对图像中某个区域内的点进行亚像素级别的精确定位。具体实现过程是通过迭代优化,计算当前点周围的梯度信息和Hessian矩阵,然后求解线性方程组并更新点坐标,直到达到优化终止标准为止。
其中,先通过PyrMeanShiftFiltering函数对感兴趣区域进行预处理,然后再用CvtColor函数将其转换为灰度图像,接着用Threshold函数对其进行二值化处理。在迭代过程中,还需要判断当前点是否在图像边界内,以及判断是否达到优化终止标准。最后返回经过优化后的精确点坐标。
阅读全文