gamma_initializer='ones', moving_mean_initializer='zeros'
时间: 2023-05-20 18:07:42 浏览: 100
这是 Tensorflow 中的变量初始化参数设置。gamma_initializer='ones'表示 gamma 的初始值全部为1,moving_mean_initializer='zeros'表示移动平均值的初始值全部是0。这些参数可以在模型训练中调整以优化模型的性能。
相关问题
class CAM_Module(Module): """ Channel attention module""" def __init__(self, in_dim): super(CAM_Module, self).__init__() self.chanel_in = in_dim self.gamma = Parameter(torch.zeros(1)) self.softmax = Softmax(dim=-1) def forward(self,x): """ inputs : x : input feature maps( B X C X H X W) returns : out : attention value + input feature attention: B X C X C """ m_batchsize, C, height, width, channle = x.size() #print(x.size()) proj_query = x.view(m_batchsize, C, -1) proj_key = x.view(m_batchsize, C, -1).permute(0, 2, 1) #形状转换并交换维度 energy = torch.bmm(proj_query, proj_key) energy_new = torch.max(energy, -1, keepdim=True)[0].expand_as(energy)-energy attention = self.softmax(energy_new) proj_value = x.view(m_batchsize, C, -1) out = torch.bmm(attention, proj_value) out = out.view(m_batchsize, C, height, width, channle) # print('out', out.shape) # print('x', x.shape) out = self.gamma*out + x #C*H*W return out 将其改成keras代码
下面是将该 Channel Attention Module 的 PyTorch 代码转换为 Keras 代码的实现:
```python
from keras.layers import Layer, Softmax
import tensorflow as tf
class CAM_Module(Layer):
""" Channel attention module"""
def __init__(self, in_dim):
super(CAM_Module, self).__init__()
self.chanel_in = in_dim
self.gamma = self.add_weight(name='gamma', shape=[1], initializer='zeros', trainable=True)
self.softmax = Softmax(axis=-1)
def call(self, x):
"""
inputs :
x : input feature maps( B X H X W X C)
returns :
out : attention value + input feature
attention: B X C X C
"""
m_batchsize, height, width, C = x.shape.as_list()
# print(x.shape)
proj_query = tf.reshape(x, [-1, height*width, C])
proj_key = tf.transpose(proj_query, perm=[0, 2, 1])
energy = tf.matmul(proj_query, proj_key)
energy_new = tf.expand_dims(tf.reduce_max(energy, axis=-1), axis=-1) - energy
attention = self.softmax(energy_new)
proj_value = tf.reshape(x, [-1, height*width, C])
out = tf.matmul(attention, proj_value)
out = tf.reshape(out, [-1, height, width, C])
out = self.gamma * out + x
return out
```
注意事项:
1. Keras 中的 Layer 类相当于 PyTorch 中的 Module 类;
2. Keras 中的 add_weight 方法可以添加模型参数,相当于 PyTorch 中的 Parameter 类;
3. Keras 中的 Softmax 层在调用时需要指定 `axis` 参数,相当于 PyTorch 中的 dim 参数;
4. Keras 中的 tf.reshape 方法可以替代 PyTorch 中的 view 方法;
5. Keras 中的 tf.transpose 方法可以替代 PyTorch 中的 permute 方法;
6. Keras 中的 tf.matmul 方法可以替代 PyTorch 中的 torch.bmm 方法。
基于LRP-gamma在cnn的实现流程以及代码
LRP-Gamma是一种用于对卷积神经网络(CNN)进行可解释性分析的方法。下面是基于TensorFlow实现LRP-Gamma的流程和代码:
1. 导入必要的库
```python
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
```
2. 定义模型
```python
# 定义模型
def cnn_model(x):
# 第1个卷积层
conv1 = tf.layers.conv2d(x, filters=32, kernel_size=(3, 3), padding='same', activation=tf.nn.relu)
# 第1个池化层
pool1 = tf.layers.max_pooling2d(conv1, pool_size=(2, 2), strides=(2, 2))
# 第2个卷积层
conv2 = tf.layers.conv2d(pool1, filters=64, kernel_size=(3, 3), padding='same', activation=tf.nn.relu)
# 第2个池化层
pool2 = tf.layers.max_pooling2d(conv2, pool_size=(2, 2), strides=(2, 2))
# 将卷积层的输出转化为一维向量
flatten = tf.layers.flatten(pool2)
# 第1个全连接层
fc1 = tf.layers.dense(flatten, units=128, activation=tf.nn.relu)
# 第2个全连接层
fc2 = tf.layers.dense(fc1, units=10)
return fc2
```
3. 加载数据集
```python
# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
# 将数据集转化为浮点数类型
x_train, x_test = x_train.astype(np.float32), x_test.astype(np.float32)
# 将数据集归一化到0-1之间
x_train, x_test = x_train / 255.0, x_test / 255.0
```
4. 定义计算图
```python
# 定义计算图
tf.reset_default_graph()
# 定义输入占位符
x = tf.placeholder(tf.float32, shape=(None, 28, 28, 1))
y = tf.placeholder(tf.int64, shape=(None,))
# 获得模型的输出
logits = cnn_model(x)
# 计算损失函数
loss = tf.losses.sparse_softmax_cross_entropy(labels=y, logits=logits)
# 定义优化器
optimizer = tf.train.AdamOptimizer(learning_rate=0.001)
# 定义训练操作
train_op = optimizer.minimize(loss)
# 定义准确率
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits, axis=1), y), tf.float32))
```
5. 训练模型
```python
# 定义训练参数
batch_size = 128
num_epochs = 5
num_batches = int(len(x_train) / batch_size)
# 创建Session
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# 开始训练模型
for epoch in range(num_epochs):
for batch in range(num_batches):
# 获得一个batch的数据
batch_x = x_train[batch * batch_size:(batch + 1) * batch_size]
batch_y = y_train[batch * batch_size:(batch + 1) * batch_size]
# 训练模型
_, loss_val, acc_val = sess.run([train_op, loss, accuracy], feed_dict={x: batch_x.reshape(-1, 28, 28, 1), y: batch_y})
print('Epoch: %d, Batch: %d/%d, Loss: %f, Accuracy: %f' % (epoch + 1, batch + 1, num_batches, loss_val, acc_val))
```
6. 进行LRP-Gamma分析
```python
# 选择一个样本
sample_idx = 100
sample_x = x_test[sample_idx].reshape(-1, 28, 28, 1)
sample_y = y_test[sample_idx]
# 获得模型的输出和预测结果
logits_val, pred_val = sess.run([logits, tf.argmax(logits, axis=1)], feed_dict={x: sample_x})
print('True Label:', sample_y)
print('Predicted Label:', pred_val[0])
# 定义LRP-Gamma函数
def lrp_gamma(z, r):
alpha = 1
eps = 1e-12
z_p = tf.where(z >= 0, z, tf.zeros_like(z))
s_p = tf.where(r > 0, tf.ones_like(r), alpha * tf.ones_like(r))
c_p = (z_p + eps) / (r + eps)
return c_p * s_p * r
# 定义输出层的LRP-Gamma值
R = tf.one_hot(pred_val, depth=10, on_value=1., off_value=0., dtype=tf.float32) * logits
# 定义最后一层的LRP-Gamma值
R = lrp_gamma(logits, R)
# 定义中间层的LRP-Gamma值
for layer_name in ['dense', 'conv2d']:
layer = tf.get_default_graph().get_tensor_by_name('dense/BiasAdd:0')
R = lrp_gamma(layer, R)
# 定义输入层的LRP-Gamma值
R = tf.reshape(R, shape=(28, 28, -1))
R = tf.reduce_sum(R, axis=2)
# 绘制LRP-Gamma图像
plt.imshow(sample_x.reshape(28, 28))
plt.imshow(R.eval(session=sess), cmap='jet', alpha=0.5)
plt.colorbar()
plt.show()
```
以上是基于TensorFlow实现LRP-Gamma的流程和代码。请注意,实现LRP-Gamma需要根据具体的模型架构进行修改。
阅读全文