用python实现GWO优化BPNN
时间: 2024-03-05 21:47:27 浏览: 150
好的,下面是一个简单的用Python实现GWO优化BPNN的代码示例,需要使用PyTorch库来实现BPNN模型的训练:
```python
import torch
import random
import numpy as np
# 定义BPNN模型
class BPNN(torch.nn.Module):
def __init__(self, input_dim, output_dim, hidden_dims=[10, 5]):
super(BPNN, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.hidden_dims = hidden_dims
# 定义神经网络结构
self.layers = torch.nn.ModuleList()
self.layers.append(torch.nn.Linear(input_dim, hidden_dims[0]))
for i in range(1, len(hidden_dims)):
self.layers.append(torch.nn.Linear(hidden_dims[i-1], hidden_dims[i]))
self.layers.append(torch.nn.Linear(hidden_dims[-1], output_dim))
# 初始化权重和偏置
for layer in self.layers:
torch.nn.init.normal_(layer.weight, mean=0.0, std=0.1)
torch.nn.init.constant_(layer.bias, 0.0)
def forward(self, x):
y = x
for layer in self.layers:
y = layer(y)
y = torch.sigmoid(y)
return y
# 定义适应度函数
def fitness(net, x, t):
y = net(x)
loss = torch.nn.functional.binary_cross_entropy(y, t)
return loss.item()
# 初始化参数
N = 5 # 灰狼数量
max_iter = 100 # 最大迭代次数
c1 = 2 # 学习因子1
c2 = 2 # 学习因子2
c3 = 2 # 学习因子3
a = 2 # 衰减因子
# 加载数据
x = torch.Tensor(np.random.rand(100, 10)) # 输入数据
t = torch.Tensor(np.random.randint(0, 2, (100, 1))).float() # 输出数据
# 初始化灰狼群体
wolf = []
for i in range(N):
net = BPNN(10, 1) # 创建一个2层神经网络
pos = []
for param in net.parameters():
pos.append(param.data.clone().detach().numpy().ravel()) # 获取当前灰狼的权重和偏置参数
wolf.append({'net': net, 'pos': pos})
# 初始化最优解
best_pos = wolf[0]['pos']
best_fitness = float('inf')
# 迭代更新
for iter in range(max_iter):
# 更新每个灰狼的位置
for i in range(N):
# 随机选择3个不同的灰狼
r = random.sample(range(N), 3)
A = wolf[r[0]]['pos']
B = wolf[r[1]]['pos']
C = wolf[r[2]]['pos']
# 计算A、B、C三个灰狼的距离
D_alpha = abs(c1 * np.array(A) - np.array(wolf[i]['pos']))
D_beta = abs(c2 * np.array(B) - np.array(wolf[i]['pos']))
D_delta = abs(c3 * np.array(C) - np.array(wolf[i]['pos']))
# 更新灰狼位置
wolf[i]['pos'] = (np.array(A) + np.array(B) + np.array(C)) / 3 - a * (D_alpha + D_beta + D_delta)
# 更新灰狼适应度
for j, param in enumerate(wolf[i]['net'].parameters()):
param.data = torch.Tensor(wolf[i]['pos'][j].reshape(param.data.shape))
fitness_i = fitness(wolf[i]['net'], x, t)
if fitness_i < best_fitness: # 更新最优解
best_fitness = fitness_i
best_pos = wolf[i]['pos'].copy()
# 输出当前迭代结果
print('Iteration {}: Best Fitness = {}'.format(iter, best_fitness))
# 使用最优解进行预测
net = BPNN(10, 1)
for j, param in enumerate(net.parameters()):
param.data = torch.Tensor(best_pos[j].reshape(param.data.shape))
y = net(x) # 使用最优解的BPNN模型进行预测
```
需要注意的是,这只是一个简单的示例代码,实际情况下需要根据具体问题进行适当修改。
阅读全文