import math def calculate_similarity(chromosome1, chromosome2, current_iteration, total_iterations): a = math.sqrt(1 - ((current_iteration / total_iterations) ** 2)) num_similar = sum([1 for gene1, gene2 in zip(chromosome1, chromosome2) if gene1 == gene2]) similarity = a * (num_similar / len(chromosome1)) if similarity > 0.9: return "相似" else: return "不相似" def calculate_density(population, chromosome, a): similar_count = sum([1 for other_chromosome in population if calculate_similarity(chromosome, other_chromosome) >= a]) density = similar_count / len(population) return density接下来我需要进行免疫选择概率,免疫选择概率为聚合适应度,且聚合适应度为包含浓度和适应度的函数,请帮我形成代码
时间: 2024-04-08 18:35:26 浏览: 52
下面是根据您的要求编写的代码,用于计算免疫选择概率以及聚合适应度:
```python
import math
def calculate_similarity(chromosome1, chromosome2, current_iteration, total_iterations):
a = math.sqrt(1 - ((current_iteration / total_iterations) ** 2))
num_similar = sum([1 for gene1, gene2 in zip(chromosome1, chromosome2) if gene1 == gene2])
similarity = a * (num_similar / len(chromosome1))
return similarity
def calculate_density(population, chromosome, a):
similar_count = sum([1 for other_chromosome in population if calculate_similarity(chromosome, other_chromosome, current_iteration, total_iterations) >= a])
density = similar_count / len(population)
return density
def calculate_aggregated_fitness(population, a):
aggregated_fitness = []
for chromosome in population:
fitness = calculate_fitness(chromosome) # 计算适应度
density = calculate_density(population, chromosome, a) # 计算浓度
aggregated_fitness.append(fitness + density) # 聚合适应度为适应度 + 浓度
return aggregated_fitness
```
在上面的代码中,我添加了一个名为`calculate_aggregated_fitness`的新函数,用于计算每个染色体的聚合适应度。在该函数中,我们首先计算每个染色体的适应度(`calculate_fitness`函数表示),然后计算该染色体与整个种群中其他染色体的相似性浓度(`calculate_density`函数表示)。最后,将适应度和浓度相加得到聚合适应度,并将其存储在一个列表中。
请注意,`current_iteration`和`total_iterations`参数需要根据您的实际情况进行传递。
希望这可以满足您的需求!如果您有任何其他问题,请随时提问。
阅读全文