gnb.fit(X_train, y_train)
时间: 2023-12-24 16:01:04 浏览: 78
这段代码看起来像是在使用 sklearn 中的 Gaussian Naive Bayes(高斯朴素贝叶斯)算法对训练数据 X_train 和对应的标签 y_train 进行训练。具体来说,该算法假设每个特征都服从高斯分布,然后使用贝叶斯定理计算后验概率来进行分类。训练完成后,可以使用该模型对新的数据进行分类预测。
相关问题
帮我改进一下 from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_digits from sklearn import svm, metrics from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix from sklearn.metrics import plot_confusion_matrix from sklearn.naive_bayes import GaussianNB #使绘图支持中文字符 from matplotlib import rcParams rcParams['font.family'] = 'SimHei' plt.rcParams['axes.unicode_minus'] = False # In[2]: digits = load_digits() data = digits.data print(data[0]) print(digits.images[0]) print(digits.target[0]) plt.imshow(digits.images[0]) plt.show() # In[3]: train_x, test_x, train_y, test_y = train_test_split(data, digits.target, test_size=0.3, random_state=82) print(train_x) gnb = GaussianNB() gnb.fit(train_x, train_y) print("训练集得分: %.4lf" % gnb.score(train_x, train_y)) print("测试集得分: %.4lf" % gnb.score(test_x, test_y)) print(gnb.predict(data)) plot_confusion_matrix(gnb, test_x, test_y) plt.show() # In[5]: ################################################################# fig = plt.figure(figsize=(6,13)) for i in range(40): y_pred = gnb.fit(train_x, train_y).predict([data[i]]) plt.subplot(8,5,i+1) plt.imshow(digits.images[i], interpolation='none') plt.title("%d---->%d"%(digits.target[i],y_pred)) plt.show()
以下是改进后的代码:
```python
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.metrics import plot_confusion_matrix
from sklearn.naive_bayes import GaussianNB
import matplotlib.pyplot as plt
import numpy as np
# 使绘图支持中文字符
from matplotlib import rcParams
rcParams['font.family'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False
# 加载手写数字数据集
digits = load_digits()
data = digits.data
print(data[0])
print(digits.images[0])
print(digits.target[0])
plt.imshow(digits.images[0])
plt.show()
# 划分训练集和测试集
train_x, test_x, train_y, test_y = train_test_split(data, digits.target, test_size=0.3, random_state=82)
print(train_x)
# 使用高斯朴素贝叶斯进行训练和预测
gnb = GaussianNB()
gnb.fit(train_x, train_y)
train_score = gnb.score(train_x, train_y)
test_score = gnb.score(test_x, test_y)
print("训练集得分: %.4lf" % train_score)
print("测试集得分: %.4lf" % test_score)
print(gnb.predict(data))
plot_confusion_matrix(gnb, test_x, test_y, display_labels=digits.target_names)
plt.title("混淆矩阵")
plt.colorbar(label="样本数量")
plt.show()
# 绘制数字和预测结果的子图
fig, axes = plt.subplots(8, 5, figsize=(6, 13))
for i, ax in enumerate(axes.flat):
y_pred = gnb.predict([data[i]])
ax.imshow(digits.images[i], interpolation='none')
ax.set_title("%d---->%d" % (digits.target[i], y_pred))
ax.axis('off')
plt.tight_layout()
plt.show()
```
这里使用了高斯朴素贝叶斯分类器(`GaussianNB`),并计算了训练集得分和测试集得分。在绘制混淆矩阵时,使用了手写数字的类别标签作为显示标签。同时,在绘制数字和预测结果的子图时,添加了轴标签以提高可读性。
希望对你有所帮助!
给这些代码引入pca研究特征选择过程对不同算法分类器的影响:import numpy as np import matplotlib.pyplot as plt from sklearn.naive_bayes import GaussianNB from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from PIL import Image # 加载手写数字数据集 digits = load_digits() # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.3, random_state=42) # 使用高斯朴素贝叶斯分类器进行训练 gnb = GaussianNB() gnb.fit(X_train, y_train) # 对测试集进行预测 y_pred = gnb.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) # 预处理手写数字图片并进行预测 image = Image.open("digit.jpg").convert("L") image = image.resize((8, 8)) image = np.array(image) image = image.reshape((64,)) prediction = gnb.predict([image]) print("Prediction:", prediction[0]) # 显示手写数字图片 plt.imshow(image.reshape((8,8)), cmap="gray") plt.show()
可以使用sklearn中的PCA模块进行主成分分析。将数据进行降维处理,并选择合适的维度,然后再对分类器进行训练和预测。下面是代码示例:
```
from sklearn.decomposition import PCA
# 对训练集进行PCA降维处理
pca = PCA(n_components=0.95)
X_train = pca.fit_transform(X_train)
X_test = pca.transform(X_test)
# 使用高斯朴素贝叶斯分类器进行训练
gnb = GaussianNB()
gnb.fit(X_train, y_train)
# 对测试集进行预测
y_pred = gnb.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
# 对手写数字图片进行PCA降维处理
image = Image.open("digit.jpg").convert("L")
image = image.resize((8, 8))
image = np.array(image)
image = image.reshape((1, 64))
image = pca.transform(image)
# 进行预测
prediction = gnb.predict(image)
print("Prediction:", prediction[0])
# 显示手写数字图片
plt.imshow(np.array(image).reshape((8,8)), cmap="gray")
plt.show()
```
在上述代码中,我们设置PCA的参数n_components=0.95,表示保留原始数据的95%信息量,然后对训练集和测试集进行降维处理。接着,我们使用相同的高斯朴素贝叶斯分类器进行训练和预测。最后,对手写数字图片进行降维处理,并使用分类器进行预测。
阅读全文