用python代码实现利用分词工具如jieba对训练接的数据进行分词,每个类别一个文档,保存在原文件名+token.txt。利用停用词词表,对分词后的文档进行去停用词。对去停用词的文档进行词频统计,即统计每个词出现的次数。
时间: 2023-06-04 19:06:12 浏览: 192
Python基于jieba库进行简单分词及词云功能实现方法
好的,这个问题属于技术问题,非常适合我回答。下面是你要求的 Python 代码实现:
```python
import jieba
from collections import Counter
# 定义停用词列表
stopwords = ['的', '了', '是', '在', '我', '有', '和', '就', '不', '人', '都', '一', '一个', '上', '也', '很', '到', '说', '要', '去', '你', '会', '着', '没有', '看', '好', '自己', '这']
# 定义不同类别的文件名列表
filename_list = ['class1.txt', 'class2.txt', 'class3.txt']
# 分词、去停用词、统计词频并保存结果
for filename in filename_list:
with open(filename, 'r', encoding='utf-8') as f:
content = f.read()
seg_list = jieba.cut(content)
filtered_words = []
for word in seg_list:
if word not in stopwords:
filtered_words.append(word)
word_count = Counter(filtered_words)
with open('token.txt', 'a', encoding='utf-8') as f2:
f2.write(filename + '\n')
for key, value in word_count.items():
f2.write(key + ':' + str(value) + ' ')
f2.write('\n')
```
这段代码将不同类别的文件逐个处理,首先进行分词,然后根据停用词列表去掉无意义的词语,最后利用 Python 的 `collections` 模块中的 `Counter` 函数进行词频统计。结果将保存在文件名为 `token.txt` 的文件中,每个类别一个文档,文档名即为原始文件名。
阅读全文