利用循环神经网络给MINIST数据集分类
时间: 2023-06-12 11:08:15 浏览: 147
创新发文基于多元宇宙优化算法MVO-DELM的多输入单输出预测Matlab实现.rar
5星 · 资源好评率100%
好的,MINIST数据集是一个手写数字数据集,包含了60,000个训练样本和10,000个测试样本。我们可以利用循环神经网络(RNN)对它进行分类。
首先,我们需要将数据集导入程序中。可以使用以下代码:
```
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
```
然后,我们需要定义RNN的结构。我们可以使用基本的LSTM单元和softmax层来实现分类。可以使用以下代码:
```
n_input = 28
n_steps = 28
n_hidden = 128
n_classes = 10
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_classes])
weights = {
'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
}
biases = {
'out': tf.Variable(tf.random_normal([n_classes]))
}
def RNN(x, weights, biases):
x = tf.unstack(x, n_steps, 1)
lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
return tf.matmul(outputs[-1], weights['out']) + biases['out']
pred = RNN(x, weights, biases)
```
接下来,我们需要定义损失函数和优化器。我们可以使用交叉熵损失函数和Adam优化器。可以使用以下代码:
```
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)
```
最后,我们需要训练模型并进行测试。可以使用以下代码:
```
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(10):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/n_steps)
for i in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(n_steps)
batch_x = batch_x.reshape((n_steps, batch_size, n_input))
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y})
avg_cost += c / total_batch
print("Epoch:", '%04d' % (epoch+1), "cost=", \
"{:.9f}".format(avg_cost))
print("Optimization Finished!")
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
test_data = mnist.test.images[:n_steps].reshape((-1, n_steps, n_input))
test_label = mnist.test.labels[:n_steps]
print("Testing Accuracy:", \
sess.run(accuracy, feed_dict={x: test_data, y: test_label}))
```
这就是利用循环神经网络给MINIST数据集分类的完整代码。
阅读全文