X_train, X_pred, y_train, y_pred = train_test_split(features, labels, test_size=0.3, random_state=42)
时间: 2023-08-18 22:43:21 浏览: 161
这是一个机器学习中常用的函数,用于将数据集分成训练集和测试集。其中,features表示特征,labels表示标签,test_size表示测试集所占的比例,random_state用于随机划分数据集,保证每次划分的结果一致。函数的返回值为X_train、X_pred、y_train、y_pred四个变量,其中X_train和y_train为训练集的特征和标签,X_pred和y_pred为测试集的特征和标签。
相关问题
帮我为下面的代码加上注释:class SimpleDeepForest: def __init__(self, n_layers): self.n_layers = n_layers self.forest_layers = [] def fit(self, X, y): X_train = X for _ in range(self.n_layers): clf = RandomForestClassifier() clf.fit(X_train, y) self.forest_layers.append(clf) X_train = np.concatenate((X_train, clf.predict_proba(X_train)), axis=1) return self def predict(self, X): X_test = X for i in range(self.n_layers): X_test = np.concatenate((X_test, self.forest_layers[i].predict_proba(X_test)), axis=1) return self.forest_layers[-1].predict(X_test[:, :-2]) # 1. 提取序列特征(如:GC-content、序列长度等) def extract_features(fasta_file): features = [] for record in SeqIO.parse(fasta_file, "fasta"): seq = record.seq gc_content = (seq.count("G") + seq.count("C")) / len(seq) seq_len = len(seq) features.append([gc_content, seq_len]) return np.array(features) # 2. 读取相互作用数据并创建数据集 def create_dataset(rna_features, protein_features, label_file): labels = pd.read_csv(label_file, index_col=0) X = [] y = [] for i in range(labels.shape[0]): for j in range(labels.shape[1]): X.append(np.concatenate([rna_features[i], protein_features[j]])) y.append(labels.iloc[i, j]) return np.array(X), np.array(y) # 3. 调用SimpleDeepForest分类器 def optimize_deepforest(X, y): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = SimpleDeepForest(n_layers=3) model.fit(X_train, y_train) y_pred = model.predict(X_test) print(classification_report(y_test, y_pred)) # 4. 主函数 def main(): rna_fasta = "RNA.fasta" protein_fasta = "pro.fasta" label_file = "label.csv" rna_features = extract_features(rna_fasta) protein_features = extract_features(protein_fasta) X, y = create_dataset(rna_features, protein_features, label_file) optimize_deepforest(X, y) if __name__ == "__main__": main()
# Define a class named 'SimpleDeepForest'
class SimpleDeepForest:
# Initialize the class with 'n_layers' parameter
def __init__(self, n_layers):
self.n_layers = n_layers
self.forest_layers = []
# Define a method named 'fit' to fit the dataset into the classifier
def fit(self, X, y):
X_train = X
# Use the forest classifier to fit the dataset for 'n_layers' times
for _ in range(self.n_layers):
clf = RandomForestClassifier()
clf.fit(X_train, y)
# Append the classifier to the list of forest layers
self.forest_layers.append(clf)
# Concatenate the training data with the predicted probability of the last layer
X_train = np.concatenate((X_train, clf.predict_proba(X_train)), axis=1)
# Return the classifier
return self
# Define a method named 'predict' to make predictions on the test set
def predict(self, X):
X_test = X
# Concatenate the test data with the predicted probability of each layer
for i in range(self.n_layers):
X_test = np.concatenate((X_test, self.forest_layers[i].predict_proba(X_test)), axis=1)
# Return the predictions of the last layer
return self.forest_layers[-1].predict(X_test[:, :-2])
# Define a function named 'extract_features' to extract sequence features
def extract_features(fasta_file):
features = []
# Parse the fasta file to extract sequence features
for record in SeqIO.parse(fasta_file, "fasta"):
seq = record.seq
gc_content = (seq.count("G") + seq.count("C")) / len(seq)
seq_len = len(seq)
features.append([gc_content, seq_len])
# Return the array of features
return np.array(features)
# Define a function named 'create_dataset' to create the dataset
def create_dataset(rna_features, protein_features, label_file):
labels = pd.read_csv(label_file, index_col=0)
X = []
y = []
# Create the dataset by concatenating the RNA and protein features
for i in range(labels.shape[0]):
for j in range(labels.shape[1]):
X.append(np.concatenate([rna_features[i], protein_features[j]]))
y.append(labels.iloc[i, j])
# Return the array of features and the array of labels
return np.array(X), np.array(y)
# Define a function named 'optimize_deepforest' to optimize the deep forest classifier
def optimize_deepforest(X, y):
# Split the dataset into training set and testing set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Create an instance of the SimpleDeepForest classifier with 3 layers
model = SimpleDeepForest(n_layers=3)
# Fit the training set into the classifier
model.fit(X_train, y_train)
# Make predictions on the testing set
y_pred = model.predict(X_test)
# Print the classification report
print(classification_report(y_test, y_pred))
# Define the main function to run the program
def main():
rna_fasta = "RNA.fasta"
protein_fasta = "pro.fasta"
label_file = "label.csv"
# Extract the RNA and protein features
rna_features = extract_features(rna_fasta)
protein_features = extract_features(protein_fasta)
# Create the dataset
X, y = create_dataset(rna_features, protein_features, label_file)
# Optimize the DeepForest classifier
optimize_deepforest(X, y)
# Check if the program is being run as the main program
if __name__ == "__main__":
main()
优化这段代码:import pandas as pd import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import SelectKBest, f_classif from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import accuracy_score # 读取Excel文件 data = pd.read_excel("output.xlsx") # 提取特征和标签 features = data.iloc[:, 1:].values labels = np.where(data.iloc[:, 0] > 59, 1, 0) # 特征选择 selector = SelectKBest(score_func=f_classif, k=11) selected_features = selector.fit_transform(features, labels) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(selected_features, labels, test_size=0.2, random_state=42) # 创建随机森林分类器 rf_classifier = RandomForestClassifier() # 定义要调优的参数范围 param_grid = { 'n_estimators': [50, 100, 200], # 决策树的数量 'max_depth': [None, 5, 10], # 决策树的最大深度 'min_samples_split': [2, 5, 10], # 拆分内部节点所需的最小样本数 'min_samples_leaf': [1, 2, 4] # 叶节点上所需的最小样本数 } # 使用网格搜索进行调优 grid_search = GridSearchCV(rf_classifier, param_grid, cv=5) grid_search.fit(X_train, y_train) # 输出最佳参数组合和对应的准确率 print("最佳参数组合:", grid_search.best_params_) print("最佳准确率:", grid_search.best_score_) # 使用最佳参数组合训练模型 best_rf_classifier = grid_search.best_estimator_ best_rf_classifier.fit(X_train, y_train) # 预测 y_pred = best_rf_classifier.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, y_pred) # 打印最高准确率分类结果 print("最高准确率分类结果:", accuracy)
优化后的代码如下:
```python
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import accuracy_score
def optimize_classifier():
# 读取Excel文件
data = pd.read_excel("output.xlsx")
# 提取特征和标签
features = data.iloc[:, 1:].values
labels = np.where(data.iloc[:, 0] > 59, 1, 0)
# 特征选择
selector = SelectKBest(score_func=f_classif, k=11)
selected_features = selector.fit_transform(features, labels)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(selected_features, labels, test_size=0.2, random_state=42)
# 创建随机森林分类器
rf_classifier = RandomForestClassifier()
# 定义要调优的参数范围
param_grid = {
'n_estimators': [50, 100, 200], # 决策树的数量
'max_depth': [None, 5, 10], # 决策树的最大深度
'min_samples_split': [2, 5, 10], # 拆分内部节点所需的最小样本数
'min_samples_leaf': [1, 2, 4] # 叶节点上所需的最小样本数
}
# 使用网格搜索进行调优
grid_search = GridSearchCV(rf_classifier, param_grid, cv=5)
grid_search.fit(X_train, y_train)
# 输出最佳参数组合和对应的准确率
print("最佳参数组合:", grid_search.best_params_)
print("最佳准确率:", grid_search.best_score_)
# 使用最佳参数组合训练模型
best_rf_classifier = grid_search.best_estimator_
best_rf_classifier.fit(X_train, y_train)
# 预测
y_pred = best_rf_classifier.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
# 打印最高准确率分类结果
print("最高准确率分类结果:", accuracy)
optimize_classifier()
```
这里将代码包装在一个函数`optimize_classifier()`中,使其更加模块化和可重用。
阅读全文