用pytorch的DQN写一个坐标转换模型
时间: 2023-12-07 21:05:45 浏览: 86
python写的坐标转换程序
好的,下面是一个用PyTorch实现的基于DQN算法的坐标转换模型示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
class DQN(nn.Module):
def __init__(self, input_size, output_size):
super(DQN, self).__init__()
self.fc1 = nn.Linear(input_size, 64)
self.fc2 = nn.Linear(64, 128)
self.fc3 = nn.Linear(128, 64)
self.fc4 = nn.Linear(64, output_size)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = torch.relu(self.fc3(x))
x = self.fc4(x)
return x
class DQNAgent:
def __init__(self, input_size, output_size, gamma=0.99, epsilon=1.0, epsilon_min=0.01, epsilon_decay=0.995, lr=0.001, memory_size=100000):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.input_size = input_size
self.output_size = output_size
self.gamma = gamma
self.epsilon = epsilon
self.epsilon_min = epsilon_min
self.epsilon_decay = epsilon_decay
self.lr = lr
self.memory = []
self.memory_size = memory_size
self.model = DQN(input_size, output_size).to(self.device)
self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr)
self.loss_fn = nn.MSELoss()
def act(self, state):
if np.random.rand() <= self.epsilon:
return np.random.randint(self.output_size)
state = torch.tensor(state, dtype=torch.float32).to(self.device)
q_values = self.model(state)
return torch.argmax(q_values).item()
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
if len(self.memory) > self.memory_size:
del self.memory[0]
def replay(self, batch_size):
if len(self.memory) < batch_size:
return
batch = np.random.choice(len(self.memory), batch_size, replace=False)
for i in batch:
state, action, reward, next_state, done = self.memory[i]
state = torch.tensor(state, dtype=torch.float32).to(self.device)
next_state = torch.tensor(next_state, dtype=torch.float32).to(self.device)
action = torch.tensor([action], dtype=torch.int64).to(self.device)
reward = torch.tensor([reward], dtype=torch.float32).to(self.device)
done = torch.tensor([done], dtype=torch.float32).to(self.device)
q_values = self.model(state)
next_q_values = self.model(next_state)
target = reward + (1 - done) * self.gamma * torch.max(next_q_values)
target = target.detach()
loss = self.loss_fn(q_values.gather(1, action.unsqueeze(1)), target.unsqueeze(1))
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
```
这个模型的输入是一个由两个浮点数构成的向量,表示坐标的x和y值,输出是一个整数,表示坐标所在的象限。具体实现中,我们使用了一个四层的全连接神经网络作为DQN模型,使用Adam优化器和MSE损失函数进行训练。在训练过程中,我们使用经验回放和ε-greedy策略来提高模型的效率和稳定性。
使用该模型进行坐标转换的示例代码如下:
```python
agent = DQNAgent(input_size=2, output_size=4)
for episode in range(1000):
state = [np.random.uniform(-10, 10), np.random.uniform(-10, 10)]
for step in range(100):
action = agent.act(state)
if action == 0:
next_state = [state[0], state[1]]
elif action == 1:
next_state = [state[0], -state[1]]
elif action == 2:
next_state = [-state[0], state[1]]
else:
next_state = [-state[0], -state[1]]
reward = 1 if next_state[0] * next_state[1] > 0 else -1
agent.remember(state, action, reward, next_state, False)
state = next_state
agent.replay(32)
```
在这个示例中,我们训练了一个坐标转换模型,将随机生成的坐标逐步转换为所在象限的编号。具体地,我们通过随机生成一个坐标作为初始状态,然后根据模型的输出选择一个象限进行转换,并计算奖励。最后,我们使用经验回放和ε-greedy策略来训练模型,使其能够准确地将坐标转换为象限编号。
阅读全文