c语言 高斯迭代法

时间: 2023-07-02 19:19:01 浏览: 187
高斯迭代法是一种求解线性方程组的迭代算法。其基本思想是通过逐步逼近线性方程组的解,从而获得精确解。下面是C语言实现高斯迭代法的代码: ``` #include <stdio.h> #include <math.h> #define N 3 // 线性方程组的未知数个数 #define MAX_ITER 100 // 最大迭代次数 #define EPS 0.0001 // 精度要求 int main() { double a[N][N] = { { 10, 2, 1 }, { 1, 5, 1 }, { 2, 3, 10 } }; // 线性方程组的系数矩阵 double b[N] = { 7, -8, 6 }; // 线性方程组的常数矩阵 double x[N] = { 0 }; // 初始化未知数向量 double x0[N] = { 0 }; // 初始化迭代向量 int k, i, j; // 循环变量 double sum; // 求和变量 for (k = 0; k < MAX_ITER; k++) // 迭代计算 { for (i = 0; i < N; i++) // 计算新的迭代向量 { sum = 0; for (j = 0; j < N; j++) { if (j != i) { sum += a[i][j] * x[j]; } } x0[i] = (b[i] - sum) / a[i][i]; } // 判断是否满足精度要求 int flag = 1; for (i = 0; i < N; i++) { if (fabs(x[i] - x0[i]) > EPS) { flag = 0; break; } } if (flag) // 迭代结束 { break; } for (i = 0; i < N; i++) // 更新未知数向量 { x[i] = x0[i]; } } if (k == MAX_ITER) // 迭代次数达到最大值,未达到精度要求 { printf("迭代次数达到最大值,未达到精度要求。\n"); } else // 输出迭代结果 { printf("线性方程组的解为:\n"); for (i = 0; i < N; i++) { printf("x[%d] = %f\n", i, x0[i]); } } return 0; } ``` 以上代码实现了一个简单的高斯迭代法程序,可以求解3个未知数的线性方程组,你可以根据需要修改N的值,以求解更多未知数的线性方程组。

相关推荐

最新推荐

recommend-type

高斯赛德尔迭代算法 C语言

高斯赛德尔迭代算法 C语言实现 高斯赛德尔迭代算法是一种常用的迭代方法,用于解决线性方程组的问题。该算法具有程序简单、存储量小的优点,特别适用于求解系数矩阵为大型稀疏矩阵的方程组。 高斯赛德尔迭代算法的...
recommend-type

实用数学算法(C语言)之高斯消去法

下面我们将详细解释这个C语言程序中的各个部分,并探讨高斯消去法的原理。 首先,程序开始定义了几个数组:`a[10][10]`用于存储系数矩阵,`b[10]`用于存储常数向量,`m[10][10]`用于存储中间计算结果,`x[10]`用于...
recommend-type

计算方法上机实验报告-C语言

《计算方法》上机实验报告主要涉及C语言编程实现几种数值计算方法,包括牛顿迭代法、雅可比迭代法和高斯-赛德尔迭代法,以及拉格朗日插值和n次牛顿插值法,还有高斯-勒让德求积法。以下是对这些方法的详细说明: 1....
recommend-type

C语言解线性方程的四种方法

迭代法主要用于大型稀疏矩阵的求解,如梯度下降法、雅可比迭代法、高斯-塞德尔迭代法等。在C语言中,迭代法通常需要设置迭代次数上限和误差容忍度,每次迭代更新未知数的估计值,直至满足停止条件。这种方法适用于...
recommend-type

解线性方程组的迭代法 数值计算方法实验 数值方法实验

在实验中,我们使用C语言编写了雅可比迭代法和高斯—塞德尔迭代法的源程序,并对其进行了编译和调试。实验结果表明,高斯—塞德尔迭代法比雅可比迭代法收敛速度快。 在实验中,我们还讨论了迭代法的收敛条件和收敛...
recommend-type

C++标准程序库:权威指南

"《C++标准程式库》是一本关于C++标准程式库的经典书籍,由Nicolai M. Josuttis撰写,并由侯捷和孟岩翻译。这本书是C++程序员的自学教材和参考工具,详细介绍了C++ Standard Library的各种组件和功能。" 在C++编程中,标准程式库(C++ Standard Library)是一个至关重要的部分,它提供了一系列预先定义的类和函数,使开发者能够高效地编写代码。C++标准程式库包含了大量模板类和函数,如容器(containers)、迭代器(iterators)、算法(algorithms)和函数对象(function objects),以及I/O流(I/O streams)和异常处理等。 1. 容器(Containers): - 标准模板库中的容器包括向量(vector)、列表(list)、映射(map)、集合(set)、无序映射(unordered_map)和无序集合(unordered_set)等。这些容器提供了动态存储数据的能力,并且提供了多种操作,如插入、删除、查找和遍历元素。 2. 迭代器(Iterators): - 迭代器是访问容器内元素的一种抽象接口,类似于指针,但具有更丰富的操作。它们可以用来遍历容器的元素,进行读写操作,或者调用算法。 3. 算法(Algorithms): - C++标准程式库提供了一组强大的算法,如排序(sort)、查找(find)、复制(copy)、合并(merge)等,可以应用于各种容器,极大地提高了代码的可重用性和效率。 4. 函数对象(Function Objects): - 又称为仿函数(functors),它们是具有operator()方法的对象,可以用作函数调用。函数对象常用于算法中,例如比较操作或转换操作。 5. I/O流(I/O Streams): - 标准程式库提供了输入/输出流的类,如iostream,允许程序与标准输入/输出设备(如键盘和显示器)以及其他文件进行交互。例如,cin和cout分别用于从标准输入读取和向标准输出写入。 6. 异常处理(Exception Handling): - C++支持异常处理机制,通过throw和catch关键字,可以在遇到错误时抛出异常,然后在适当的地方捕获并处理异常,保证了程序的健壮性。 7. 其他组件: - 还包括智能指针(smart pointers)、内存管理(memory management)、数值计算(numerical computations)和本地化(localization)等功能。 《C++标准程式库》这本书详细讲解了这些内容,并提供了丰富的实例和注解,帮助读者深入理解并熟练使用C++标准程式库。无论是初学者还是经验丰富的开发者,都能从中受益匪浅,提升对C++编程的掌握程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

怎样使scanf函数和printf在同一行表示

在C语言中,`scanf` 和 `printf` 通常是分开使用的,因为它们的功能不同,一个负责从标准输入读取数据,另一个负责向标准输出显示信息。然而,如果你想要在一行代码中完成读取和打印,可以创建一个临时变量存储 `scanf` 的结果,并立即传递给 `printf`。但这种做法并不常见,因为它违反了代码的清晰性和可读性原则。 下面是一个简单的示例,展示了如何在一个表达式中使用 `scanf` 和 `printf`,但这并不是推荐的做法: ```c #include <stdio.h> int main() { int num; printf("请输入一个整数: ");
recommend-type

Java解惑:奇数判断误区与改进方法

Java是一种广泛使用的高级编程语言,以其面向对象的设计理念和平台无关性著称。在本文档中,主要关注的是Java中的基础知识和解惑,特别是关于Java编程语言的一些核心概念和陷阱。 首先,文档提到的“表达式谜题”涉及到Java中的取余运算符(%)。在Java中,取余运算符用于计算两个数相除的余数。例如,`i % 2` 表达式用于检查一个整数`i`是否为奇数。然而,这里的误导在于,Java对`%`操作符的处理方式并不像常规数学那样,对于负数的奇偶性判断存在问题。由于Java的`%`操作符返回的是与左操作数符号相同的余数,当`i`为负奇数时,`i % 2`会得到-1而非1,导致`isOdd`方法错误地返回`false`。 为解决这个问题,文档建议修改`isOdd`方法,使其正确处理负数情况,如这样: ```java public static boolean isOdd(int i) { return i % 2 != 0; // 将1替换为0,改变比较条件 } ``` 或者使用位操作符AND(&)来实现,因为`i & 1`在二进制表示中,如果`i`的最后一位是1,则结果为非零,表明`i`是奇数: ```java public static boolean isOdd(int i) { return (i & 1) != 0; // 使用位操作符更简洁 } ``` 这些例子强调了在编写Java代码时,尤其是在处理数学运算和边界条件时,理解运算符的底层行为至关重要,尤其是在性能关键场景下,选择正确的算法和操作符能避免潜在的问题。 此外,文档还提到了另一个谜题,暗示了开发者在遇到类似问题时需要进行细致的测试,确保代码在各种输入情况下都能正确工作,包括负数、零和正数。这不仅有助于发现潜在的bug,也能提高代码的健壮性和可靠性。 这个文档旨在帮助Java学习者和开发者理解Java语言的一些基本特性,特别是关于取余运算符的行为和如何处理边缘情况,以及在性能敏感的场景下优化算法选择。通过解决这些问题,读者可以更好地掌握Java编程,并避免常见误区。