JavaCV以图搜图代码
时间: 2023-07-02 19:05:15 浏览: 228
以下是使用JavaCV实现以图搜图的代码示例:
```java
import org.bytedeco.javacpp.opencv_core.*;
import org.bytedeco.javacpp.opencv_features2d.*;
import org.bytedeco.javacpp.opencv_xfeatures2d.*;
import org.bytedeco.javacpp.indexer.FloatRawIndexer;
import org.bytedeco.javacpp.indexer.UByteRawIndexer;
import java.io.File;
import java.util.ArrayList;
import java.util.List;
import static org.bytedeco.javacpp.opencv_core.CV_32F;
import static org.bytedeco.javacpp.opencv_core.CV_8U;
import static org.bytedeco.javacpp.opencv_core.NORM_L2;
import static org.bytedeco.javacpp.opencv_features2d.Features2d.drawKeypoints;
import static org.bytedeco.javacpp.opencv_imgcodecs.imread;
import static org.bytedeco.javacpp.opencv_imgcodecs.imwrite;
import static org.bytedeco.javacpp.opencv_xfeatures2d.SIFT.create;
public class ImageSearch {
public static void main(String[] args) {
// 加载原图并提取SIFT特征
Mat img1 = imread("path/to/image1.jpg");
Mat img1Gray = new Mat();
cvtColor(img1, img1Gray, COLOR_BGR2GRAY);
MatOfKeyPoint keypoints1 = new MatOfKeyPoint();
Mat descriptors1 = new Mat();
create().detectAndCompute(img1Gray, new Mat(), keypoints1, descriptors1);
// 加载待搜索图像并提取SIFT特征
Mat img2 = imread("path/to/image2.jpg");
Mat img2Gray = new Mat();
cvtColor(img2, img2Gray, COLOR_BGR2GRAY);
MatOfKeyPoint keypoints2 = new MatOfKeyPoint();
Mat descriptors2 = new Mat();
create().detectAndCompute(img2Gray, new Mat(), keypoints2, descriptors2);
// 匹配SIFT特征
MatOfDMatch matches = new MatOfDMatch();
DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.FLANNBASED);
matcher.match(descriptors1, descriptors2, matches);
// 筛选距离最近的匹配点
float minDistance = Float.MAX_VALUE;
DMatch[] matchArray = matches.toArray();
for (int i = 0; i < matchArray.length; i++) {
float distance = matchArray[i].distance();
if (distance < minDistance) {
minDistance = distance;
}
}
List<DMatch> goodMatches = new ArrayList<>();
for (int i = 0; i < matchArray.length; i++) {
if (matchArray[i].distance() <= 2 * minDistance) {
goodMatches.add(matchArray[i]);
}
}
// 绘制匹配结果
Mat result = new Mat();
drawMatches(img1, keypoints1, img2, keypoints2, new MatOfDMatch(goodMatches.toArray(new DMatch[0])), result);
imwrite("path/to/result.jpg", result);
}
}
```
以上代码中,我们使用JavaCV提供的SIFT算法对原图像和待搜索图像提取SIFT特征,然后使用FLANN匹配器进行匹配,筛选出距离最近的匹配点,并绘制匹配结果。注意,由于JavaCV并不支持直接绘制匹配点,因此我们需要使用OpenCV的C++接口中提供的drawMatches函数,将其转换为Mat类型后再进行绘制。
阅读全文