回归模型——被动攻击算法 C++带类实现及案例
时间: 2023-11-11 11:06:10 浏览: 167
被动攻击是指攻击者在不干扰系统正常运行的情况下,通过分析和破解系统信息来获取敏感信息或对系统造成破坏。在网络安全中,被动攻击是一种常见的攻击手段,例如窃听、流量分析和重放攻击等。
被动攻击可以通过构建回归模型来进行检测和预防。回归模型可以通过分析历史数据,识别出潜在的攻击模式和异常行为,并对新的数据进行分类和预测。
下面是一个使用C++实现被动攻击检测的案例,使用的回归模型是支持向量机(SVM)。
```cpp
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include <sstream>
#include <cstdlib>
#include <ctime>
#include <cmath>
#include "svm.h"
using namespace std;
class PassiveAttackDetector {
public:
PassiveAttackDetector() : m_trained(false) {}
void load_data(const string& file_path) {
ifstream fin(file_path.c_str());
if (!fin) {
cerr << "Failed to open file: " << file_path << endl;
exit(1);
}
string line;
while (getline(fin, line)) {
vector<double> features;
istringstream iss(line);
double value;
while (iss >> value) {
features.push_back(value);
}
m_data.push_back(features);
}
fin.close();
}
void train() {
if (m_data.empty()) {
cerr << "No data loaded!" << endl;
exit(1);
}
svm_problem prob;
prob.l = m_data.size();
prob.y = new double[prob.l];
prob.x = new svm_node*[prob.l];
for (int i = 0; i < prob.l; ++i) {
vector<double>& features = m_data[i];
int num_features = features.size() - 1;
prob.x[i] = new svm_node[num_features + 1];
for (int j = 0; j < num_features; ++j) {
prob.x[i][j].index = j + 1;
prob.x[i][j].value = features[j];
}
prob.x[i][num_features].index = -1;
prob.y[i] = features[num_features];
}
svm_parameter param;
param.svm_type = C_SVC;
param.kernel_type = RBF;
param.gamma = 0.5;
param.C = 1;
const char* errmsg = svm_check_parameter(&prob, ¶m);
if (errmsg) {
cerr << "Failed to check svm parameters: " << errmsg << endl;
exit(1);
}
m_model = svm_train(&prob, ¶m);
m_trained = true;
for (int i = 0; i < prob.l; ++i) {
delete[] prob.x[i];
}
delete[] prob.x;
delete[] prob.y;
}
bool detect(const vector<double>& features) {
if (!m_trained) {
cerr << "Model not trained!" << endl;
exit(1);
}
svm_node* x = new svm_node[features.size()];
for (size_t i = 0; i < features.size(); ++i) {
x[i].index = i + 1;
x[i].value = features[i];
}
x[features.size()].index = -1;
double label = svm_predict(m_model, x);
delete[] x;
return (label == 1.0);
}
private:
vector<vector<double> > m_data;
svm_model* m_model;
bool m_trained;
};
int main() {
PassiveAttackDetector detector;
// Load training data
detector.load_data("training_data.txt");
// Train the model
detector.train();
// Generate test data
const int NUM_SAMPLES = 10000;
const int NUM_FEATURES = 10;
const double ATTACK_RATE = 0.1;
const double ATTACK_STRENGTH = 10.0;
srand(time(NULL));
int num_attacks = static_cast<int>(ATTACK_RATE * NUM_SAMPLES);
int num_normal = NUM_SAMPLES - num_attacks;
vector<vector<double> > test_data(num_normal + num_attacks, vector<double>(NUM_FEATURES + 1));
for (int i = 0; i < num_normal; ++i) {
for (int j = 0; j < NUM_FEATURES; ++j) {
test_data[i][j] = static_cast<double>(rand()) / RAND_MAX;
}
test_data[i][NUM_FEATURES] = 0.0; // Normal sample
}
for (int i = num_normal; i < num_normal + num_attacks; ++i) {
for (int j = 0; j < NUM_FEATURES; ++j) {
test_data[i][j] = static_cast<double>(rand()) / RAND_MAX + ATTACK_STRENGTH;
}
test_data[i][NUM_FEATURES] = 1.0; // Attack sample
}
// Test the model
int true_positives = 0;
int false_positives = 0;
for (size_t i = 0; i < test_data.size(); ++i) {
bool is_attack = detector.detect(test_data[i]);
if (is_attack && test_data[i][NUM_FEATURES] == 1.0) {
true_positives++;
} else if (is_attack && test_data[i][NUM_FEATURES] == 0.0) {
false_positives++;
}
}
double detection_rate = static_cast<double>(true_positives) / num_attacks;
double false_alarm_rate = static_cast<double>(false_positives) / num_normal;
cout << "Detection rate: " << detection_rate << endl;
cout << "False alarm rate: " << false_alarm_rate << endl;
return 0;
}
```
这个程序首先从文件中加载训练数据,然后用支持向量机训练一个分类模型。接着生成测试数据,其中攻击样本占总样本数的10%,攻击样本的特征值比正常样本大10倍。最后,程序用训练好的模型检测测试数据,并统计检测率和误报率。
要使用这个程序,需要将训练数据存储在文件“training_data.txt”中,每行表示一个数据样本,其中最后一个数字表示样本是否为攻击样本(0表示正常样本,1表示攻击样本)。对于上面的示例代码,训练数据可以随机生成。
```cpp
const int NUM_SAMPLES = 1000;
const int NUM_FEATURES = 10;
const double ATTACK_RATE = 0.1;
const double ATTACK_STRENGTH = 10.0;
ofstream fout("training_data.txt");
srand(time(NULL));
int num_attacks = static_cast<int>(ATTACK_RATE * NUM_SAMPLES);
int num_normal = NUM_SAMPLES - num_attacks;
for (int i = 0; i < num_normal; ++i) {
for (int j = 0; j < NUM_FEATURES; ++j) {
fout << static_cast<double>(rand()) / RAND_MAX << " ";
}
fout << "0" << endl; // Normal sample
}
for (int i = num_normal; i < num_normal + num_attacks; ++i) {
for (int j = 0; j < NUM_FEATURES; ++j) {
fout << static_cast<double>(rand()) / RAND_MAX + ATTACK_STRENGTH << " ";
}
fout << "1" << endl; // Attack sample
}
fout.close();
```
上面的代码生成了1000个样本,其中10%为攻击样本,特征值在[0, 1]范围内,攻击样本的特征值比正常样本大10倍。生成的训练数据存储在“training_data.txt”文件中。
这个程序是一个基本的实现,可以根据实际需求进行修改和扩展。
阅读全文