基于pytorch环境用arcface测试lfw数据集训练出来的模型的完整代码
时间: 2023-06-12 11:02:51 浏览: 200
DehazeNet-pytorch版本代码(含训练好的模型)
5星 · 资源好评率100%
以下是基于 PyTorch 环境下使用 ArcFace 测试 LFW 数据集训练模型的完整代码:
```python
import os
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from models import ArcFaceModel
from losses import ArcFaceLoss
# Define arguments
parser = argparse.ArgumentParser(description='ArcFace LFW evaluation')
parser.add_argument('--data_dir', type=str, default='./data/lfw',
help='directory where the LFW dataset is located')
parser.add_argument('--model_path', type=str, default='./models/model.pth',
help='path to the trained model')
parser.add_argument('--batch_size', type=int, default=32,
help='batch size for testing')
parser.add_argument('--image_size', type=int, default=112,
help='image size for testing')
parser.add_argument('--num_workers', type=int, default=4,
help='number of workers for data loading')
args = parser.parse_args()
# Define device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Define data transformations
transform = transforms.Compose([
transforms.Resize((args.image_size, args.image_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
# Load LFW dataset
lfw_dataset = ImageFolder(args.data_dir, transform=transform)
lfw_loader = DataLoader(lfw_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
# Load model
model = ArcFaceModel(num_classes=len(lfw_dataset.classes)).to(device)
model.load_state_dict(torch.load(args.model_path))
model.eval()
# Define loss function
criterion = ArcFaceLoss()
# Define testing function
def test():
correct = 0
total = 0
with torch.no_grad():
for images, labels in lfw_loader:
images = images.to(device)
labels = labels.to(device)
embeddings = model(images)
predictions = torch.argmax(embeddings, dim=1)
correct += (predictions == labels).sum().item()
total += len(labels)
accuracy = correct / total
return accuracy
# Test model on LFW dataset
accuracy = test()
print('Accuracy on LFW dataset: {:.2%}'.format(accuracy))
```
需要注意的是,上述代码中用到了 `models` 和 `losses` 模块中的内容,因此需要提前创建这两个模块。`models` 模块是用来定义 ArcFace 模型的,这里可以使用开源的实现,如 `https://github.com/ronghuaiyang/arcface-pytorch`。`losses` 模块是用来定义 ArcFace 损失函数的,这里需要根据实际需求进行编写。
阅读全文