csdn c语言实现八数码问题
时间: 2023-09-01 10:13:34 浏览: 200
八数码问题是一种经典的人工智能问题,可以使用深度优先搜索、广度优先搜索、A*算法等多种算法来解决。以下是一个基于C语言的八数码问题求解程序:
```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX_QUEUE_SIZE 1000 // 队列最大长度
#define MAX_STEP 100 // 最大步数
// 八数码状态结构体
typedef struct {
int board[3][3]; // 棋盘状态
int zero_row; // 空格所在行
int zero_col; // 空格所在列
char path[MAX_STEP + 1]; // 路径
} State;
// 队列结构体
typedef struct {
State data[MAX_QUEUE_SIZE]; // 数据
int front; // 队首指针
int rear; // 队尾指针
} Queue;
// 初始化队列
void init_queue(Queue *queue) {
queue->front = 0;
queue->rear = 0;
}
// 判断队列是否为空
int is_queue_empty(Queue *queue) {
return queue->front == queue->rear;
}
// 判断队列是否已满
int is_queue_full(Queue *queue) {
return (queue->rear + 1) % MAX_QUEUE_SIZE == queue->front;
}
// 入队
void enqueue(Queue *queue, State state) {
if (is_queue_full(queue)) {
fprintf(stderr, "Error: queue is full\n");
exit(1);
}
queue->data[queue->rear] = state;
queue->rear = (queue->rear + 1) % MAX_QUEUE_SIZE;
}
// 出队
State dequeue(Queue *queue) {
if (is_queue_empty(queue)) {
fprintf(stderr, "Error: queue is empty\n");
exit(1);
}
State state = queue->data[queue->front];
queue->front = (queue->front + 1) % MAX_QUEUE_SIZE;
return state;
}
// 初始化状态
void init_state(State *state) {
int i, j, k;
for (i = 0, k = 1; i < 3; i++) {
for (j = 0; j < 3; j++, k++) {
state->board[i][j] = k % 9;
if (k % 9 == 0) {
state->board[i][j] = 0;
state->zero_row = i;
state->zero_col = j;
}
}
}
state->path[0] = '\0';
}
// 复制状态
void copy_state(State *dest, State *src) {
memcpy(dest->board, src->board, sizeof(src->board));
dest->zero_row = src->zero_row;
dest->zero_col = src->zero_col;
strcpy(dest->path, src->path);
}
// 交换两个位置的值
void swap(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;
}
// 移动空格
void move(State *state, int row, int col) {
swap(&state->board[state->zero_row][state->zero_col], &state->board[row][col]);
state->zero_row = row;
state->zero_col = col;
}
// 判断状态是否合法
int is_valid_state(State *state) {
int i, j, k, count = 0;
for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
k = state->board[i][j];
if (k == 0) {
continue;
}
count++;
if (k != i * 3 + j + 1) {
return 0;
}
}
}
return count == 8;
}
// 打印状态
void print_state(State *state) {
int i, j;
for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
printf("%d ", state->board[i][j]);
}
printf("\n");
}
printf("%s\n", state->path);
}
// 深度优先搜索
int dfs(State *state, int depth, int max_depth) {
if (depth == max_depth) {
return 0;
}
if (is_valid_state(state)) {
print_state(state);
return 1;
}
State next_state;
int i;
// 向上移动
if (state->zero_row > 0) {
copy_state(&next_state, state);
move(&next_state, state->zero_row - 1, state->zero_col);
next_state.path[depth] = 'U';
next_state.path[depth + 1] = '\0';
if (dfs(&next_state, depth + 1, max_depth)) {
return 1;
}
}
// 向下移动
if (state->zero_row < 2) {
copy_state(&next_state, state);
move(&next_state, state->zero_row + 1, state->zero_col);
next_state.path[depth] = 'D';
next_state.path[depth + 1] = '\0';
if (dfs(&next_state, depth + 1, max_depth)) {
return 1;
}
}
// 向左移动
if (state->zero_col > 0) {
copy_state(&next_state, state);
move(&next_state, state->zero_row, state->zero_col - 1);
next_state.path[depth] = 'L';
next_state.path[depth + 1] = '\0';
if (dfs(&next_state, depth + 1, max_depth)) {
return 1;
}
}
// 向右移动
if (state->zero_col < 2) {
copy_state(&next_state, state);
move(&next_state, state->zero_row, state->zero_col + 1);
next_state.path[depth] = 'R';
next_state.path[depth + 1] = '\0';
if (dfs(&next_state, depth + 1, max_depth)) {
return 1;
}
}
return 0;
}
// 广度优先搜索
void bfs(State *state) {
Queue queue;
init_queue(&queue);
enqueue(&queue, *state);
while (!is_queue_empty(&queue)) {
State cur_state = dequeue(&queue);
if (is_valid_state(&cur_state)) {
print_state(&cur_state);
return;
}
State next_state;
int i;
// 向上移动
if (cur_state.zero_row > 0) {
copy_state(&next_state, &cur_state);
move(&next_state, cur_state.zero_row - 1, cur_state.zero_col);
next_state.path[strlen(cur_state.path)] = 'U';
next_state.path[strlen(cur_state.path) + 1] = '\0';
enqueue(&queue, next_state);
}
// 向下移动
if (cur_state.zero_row < 2) {
copy_state(&next_state, &cur_state);
move(&next_state, cur_state.zero_row + 1, cur_state.zero_col);
next_state.path[strlen(cur_state.path)] = 'D';
next_state.path[strlen(cur_state.path) + 1] = '\0';
enqueue(&queue, next_state);
}
// 向左移动
if (cur_state.zero_col > 0) {
copy_state(&next_state, &cur_state);
move(&next_state, cur_state.zero_row, cur_state.zero_col - 1);
next_state.path[strlen(cur_state.path)] = 'L';
next_state.path[strlen(cur_state.path) + 1] = '\0';
enqueue(&queue, next_state);
}
// 向右移动
if (cur_state.zero_col < 2) {
copy_state(&next_state, &cur_state);
move(&next_state, cur_state.zero_row, cur_state.zero_col + 1);
next_state.path[strlen(cur_state.path)] = 'R';
next_state.path[strlen(cur_state.path) + 1] = '\0';
enqueue(&queue, next_state);
}
}
}
int main() {
State state;
init_state(&state);
bfs(&state);
return 0;
}
```
以上程序实现了八数码问题的解法,可以通过深度优先搜索或广度优先搜索来求解。其中深度优先搜索使用了递归实现,广度优先搜索使用了队列实现。
阅读全文