给出一个gan的超像素判别器的pytorch实现
时间: 2023-10-10 14:13:17 浏览: 75
下面是一个基于PyTorch实现的GAN超像素判别器的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class Discriminator(nn.Module):
def __init__(self, img_shape):
super(Discriminator, self).__init__()
self.img_shape = img_shape
self.conv1 = nn.Conv2d(img_shape[0], 64, kernel_size=4, stride=2, padding=1)
self.conv2 = nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1)
self.bn2 = nn.BatchNorm2d(128)
self.conv3 = nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1)
self.bn3 = nn.BatchNorm2d(256)
self.conv4 = nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1)
self.bn4 = nn.BatchNorm2d(512)
self.conv5 = nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0)
def forward(self, img):
out = F.leaky_relu(self.conv1(img), 0.2)
out = F.leaky_relu(self.bn2(self.conv2(out)), 0.2)
out = F.leaky_relu(self.bn3(self.conv3(out)), 0.2)
out = F.leaky_relu(self.bn4(self.conv4(out)), 0.2)
out = torch.sigmoid(self.conv5(out))
return out
```
这个判别器采用了5个卷积层,最后输出一个值,在训练中判别器会判断输入的超像素是真实的还是生成的。其中,`img_shape`是输入超像素的形状,这个模型支持任意大小的输入。`Conv2d`是PyTorch中的卷积层,`BatchNorm2d`是批归一化层,`leaky_relu`是带泄露整流的激活函数,`sigmoid`是输出层激活函数。在训练过程中,需要对该模型进行优化更新,可以使用PyTorch中的优化器进行实现。
阅读全文