1、前端:echarts、html、css 2、后端:flask、numpy、pandas 1、构建前端页面 2、编写后台统计的程序 3、根据统计结果进行可视化 4、附加功能:登录界面、统计过程中的进度条,实现数据可视化大屏展示面板
时间: 2023-08-31 09:52:00 浏览: 79
好的,这是一个比较完整的需求,需要进行前后端的开发。我来简单介绍一下实现的步骤:
1. 构建前端页面:使用HTML、CSS等技术构建页面,使用Echarts来实现数据可视化展示,可以根据实际需求自定义样式和布局。
2. 编写后台统计的程序:使用Python Flask框架,结合NumPy、Pandas等库来处理数据,进行统计分析,并将结果传递给前端页面。
3. 根据统计结果进行可视化:在前端页面中使用Echarts来展示统计结果,可以使用不同类型的图表来呈现数据,如柱状图、折线图、饼图等。
4. 附加功能:登录界面可以使用Flask-Login等库来实现用户认证和鉴权;统计过程中的进度条可以使用JavaScript来实现,提高用户体验。
最终,将前端页面和后台程序进行集成,就可以实现数据可视化大屏展示面板。
相关问题
写一个python Flask销售预测系统中,有一个suanfa.py文件:先读取shuju.csv (共有24条数据,包含Date(object)(yyyy/mm)和TotalPrice(float64)两个属性), 然后用scaler将TotalPrice进行归一化处理,之后定义一个函数def split_data(data, lookback): 将数据集划分为测试集(0.2)和训练集(0.8),data_raw = data.to_numpy(),lookback = 4, 然后再将划分完成后的测试集和训练集转换为PyTorch张量,然后定义超参数, 定义算法模型model=LSTM()、损失函数和优化器(Adam)然后训练模型求出MSE, 将模型保存;有一个predict.html文件:里面有一个日期选择框和一个销售额预测按钮,用户选择好年月后 点击按钮系统就开始调用保存好的模型来预测所选月份的销售额,然后将预测结果返回到前端页面日期选择框下面的结果返回 框中;有一个app.py文件:定义路径。用flask和bootstrap、LayUI写出完整详细代码
suanfa.py:
```python
import pandas as pd
import numpy as np
import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
from sklearn.preprocessing import MinMaxScaler
# Read csv file
data = pd.read_csv('shuju.csv')
# Normalize the data
scaler = MinMaxScaler()
data['TotalPrice'] = scaler.fit_transform(data[['TotalPrice']])
# Split data into train and test sets
def split_data(data, lookback):
data_raw = data.to_numpy()
data = []
for index in range(len(data_raw) - lookback):
data.append(data_raw[index: index + lookback])
data = np.array(data)
train_size = int(len(data) * 0.8)
train_data = data[:train_size, :]
test_data = data[train_size:, :]
return train_data, test_data
train_data, test_data = split_data(data, lookback=4)
# Convert to PyTorch tensors
train_data = torch.from_numpy(train_data).type(torch.Tensor)
test_data = torch.from_numpy(test_data).type(torch.Tensor)
# Define hyperparameters
input_size = 1
hidden_size = 2
num_layers = 1
output_size = 1
learning_rate = 0.01
num_epochs = 200
# Define LSTM model
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(LSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).requires_grad_()
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).requires_grad_()
out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))
out = self.fc(out[:, -1, :])
return out
model = LSTM(input_size, hidden_size, num_layers, output_size)
# Define loss function and optimizer
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Train the model
for epoch in range(num_epochs):
outputs = model(train_data)
optimizer.zero_grad()
loss = criterion(outputs, train_data[:, -1, :])
loss.backward()
optimizer.step()
if epoch % 10 == 0:
print("Epoch: %d, loss: %1.5f" % (epoch, loss.item()))
# Save the model
torch.save(model, 'model.pt')
```
predict.html:
```html
<!DOCTYPE html>
<html>
<head>
<title>Predict sales</title>
<link rel="stylesheet" type="text/css" href="{{ url_for('static', filename='layui/css/layui.css') }}">
<script type="text/javascript" src="{{ url_for('static', filename='layui/layui.js') }}"></script>
</head>
<body>
<div class="layui-container">
<div class="layui-row">
<div class="layui-col-md-offset4 layui-col-md-4">
<h2 class="layui-text-center">Predict sales</h2>
<form class="layui-form" action="">
<div class="layui-form-item">
<label class="layui-form-label">Date</label>
<div class="layui-input-inline">
<input type="text" name="date" id="date" class="layui-input" placeholder="yyyy/mm">
</div>
</div>
<div class="layui-form-item">
<div class="layui-input-block">
<button type="button" class="layui-btn layui-btn-normal" onclick="predict()">Predict</button>
</div>
</div>
</form>
<div class="layui-text-center">
<h3>Predicted sales:</h3>
<h4 id="result"></h4>
</div>
</div>
</div>
</div>
<script type="text/javascript">
function predict() {
var date = document.getElementById("date").value;
if (date === "") {
layer.msg("Please enter a date");
return;
}
var year = parseInt(date.split("/")[0]);
var month = parseInt(date.split("/")[1]);
if (isNaN(year) || isNaN(month)) {
layer.msg("Invalid date format");
return;
}
if (month < 1 || month > 12) {
layer.msg("Invalid month");
return;
}
var data = [[
[{{ test_data[-1, :][0] }}],
[{{ test_data[-2, :][0] }}],
[{{ test_data[-3, :][0] }}],
[{{ test_data[-4, :][0] }}]
]];
var model = "{{ url_for('static', filename='model.pt') }}";
$.ajax({
type: "POST",
url: "{{ url_for('predict') }}",
data: JSON.stringify({
"year": year,
"month": month,
"data": data,
"model": model
}),
contentType: "application/json; charset=utf-8",
dataType: "json",
success: function(result) {
document.getElementById("result").innerHTML = result.predicted_sales.toFixed(2);
},
error: function(xhr, textStatus, errorThrown) {
layer.msg("Error: " + xhr.responseText);
}
});
}
</script>
</body>
</html>
```
app.py:
```python
import os
import json
import torch
from flask import Flask, render_template, request
app = Flask(__name__)
app.config['SECRET_KEY'] = os.urandom(24)
class SalesDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, index):
x = self.data[index, :-1]
y = self.data[index, -1]
return x, y
@app.route('/')
def index():
return render_template('predict.html')
@app.route('/predict', methods=['POST'])
def predict():
year = request.json['year']
month = request.json['month']
data = torch.from_numpy(np.array(request.json['data'])).type(torch.Tensor)
model = torch.load(request.json['model'])
predicted_sales = model(data).item()
return json.dumps({'predicted_sales': predicted_sales})
if __name__ == '__main__':
app.run(debug=True)
```
阅读全文