(Graph(num_nodes=1767, num_edges=34085, ndata_schemes={'_ID': Scheme(shape=(), dtype=torch.int64), 'feat': Scheme(shape=(50,), dtype=torch.float32), 'label': Scheme(shape=(121,), dtype=torch.float32)} edata_schemes={'_ID': Scheme(shape=(), dtype=torch.int64)}), tensor([[-0.0855, -0.0884, -0.1128, ..., -0.1399, -0.1494, -0.1481], [-0.0855, -0.0884, -0.1128, ..., -0.1399, -0.1494, -0.1481], [-0.0855, -0.0884, -0.1128, ..., -0.1399, -0.1494, -0.1481], ..., [-0.0855, -0.0884, -0.1128, ..., -0.1399, -0.1494, -0.1481], [-0.0855, -0.0884, -0.1128, ..., -0.1399, -0.1494, -0.1481], [-0.0855, -0.0884, -0.1128, ..., -0.1399, -0.1494, -0.1481]]), tensor([[1., 0., 0., ..., 1., 1., 0.], [1., 0., 0., ..., 1., 1., 1.], [1., 1., 1., ..., 0., 0., 0.], ..., [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [1., 0., 0., ..., 0., 0., 0.]]))解释一下这个输出
时间: 2023-10-01 19:09:18 浏览: 105
这个输出包含了三个部分:(Graph, node_features, node_labels)。
第一个部分是一个 Graph 对象,表示一个包含 1767 个节点和 34085 条边的图。其中 ndata_schemes 表示节点数据的属性,包括 '_ID'、'feat' 和 'label' 三个属性,其分别表示节点的 ID、节点的特征和节点的标签。edata_schemes 表示边数据的属性,这里只包含一个 '_ID' 属性,表示边的 ID。
第二个部分是一个形状为 (1767, 50) 的 Tensor,表示每个节点的特征向量。其中第 i 行表示第 i 个节点的特征向量。
第三个部分是一个形状为 (1767, 121) 的 Tensor,表示每个节点的标签。其中第 i 行表示第 i 个节点的标签向量。节点标签是一个 121 维的向量,每一维表示对应的关系类型是否存在,存在则为 1,否则为 0。
这个输出通常是用于图神经网络中输入数据的格式,其中 Graph 对象表示图的结构,node_features 表示每个节点的特征,node_labels 表示每个节点的标签。
阅读全文