克鲁斯卡尔matlab
时间: 2023-09-22 20:11:50 浏览: 81
克鲁斯卡尔算法是一种用于解决最小生成树问题的算法。在MATLAB中,可以使用以下代码实现克鲁斯卡尔算法:
```matlab
function [T, totalCost] = kruskal(adjMatrix)
% adjMatrix为邻接矩阵,表示图的连接情况
[n, ~] = size(adjMatrix);
% 初始化最小生成树T和总权重totalCost
T = zeros(n);
totalCost = 0;
% 将所有边按照权重从小到大排序
edges = sortrows([(1:n^2)' adjMatrix(:)]);
% 初始化连通分量
comp = (1:n)';
for i = 1:n^2
% 获取当前边的两个端点
u = edges(i, 1);
v = mod(edges(i, 1)-1, n) + 1;
% 判断u和v是否在同一连通分量中
if comp(u) ~= comp(v)
% 如果不在同一连通分量中,将它们加入同一连通分量
T(u, v) = edges(i, 2);
T(v, u) = edges(i, 2);
totalCost = totalCost + edges(i, 2);
comp(comp == comp(u)) = comp(v);
end
end
```
在调用该函数时,输入邻接矩阵即可得到最小生成树T和总权重totalCost。
相关问题
克鲁斯卡尔matlab的模板
当使用克鲁斯卡尔算法在Matlab中实现最小生成树时,以下是一个简单的模板代码:
```matlab
function [MST, totalWeight] = KruskalAlgorithm(adjMatrix)
% 输入:邻接矩阵adjMatrix
% 输出:最小生成树MST的邻接矩阵表示和总权重totalWeight
numNodes = size(adjMatrix, 1); % 图中节点数量
numEdges = sum(sum(adjMatrix > 0)) / 2; % 图中边的数量
% 创建边的列表
edges = zeros(numEdges, 3); % 每行包括两个节点和对应的权重
count = 1;
for i = 1:numNodes-1
for j = i+1:numNodes
if adjMatrix(i, j) > 0
edges(count, :) = [i, j, adjMatrix(i, j)];
count = count + 1;
end
end
end
% 按照边的权重值进行排序
edges = sortrows(edges, 3);
% 初始化并查集
parent = 1:numNodes;
rank = zeros(1, numNodes);
% 初始化最小生成树和总权重
MST = zeros(numNodes);
totalWeight = 0;
% 执行克鲁斯卡尔算法
for i = 1:numEdges
u = edges(i, 1);
v = edges(i, 2);
weight = edges(i, 3);
% 判断是否形成环路
if findParent(u) ~= findParent(v)
MST(u, v) = weight;
MST(v, u) = weight;
totalWeight = totalWeight + weight;
unionSets(u, v);
end
end
% 辅助函数:查找节点的根节点
function root = findParent(node)
while parent(node) ~= node
node = parent(node);
end
root = node;
end
% 辅助函数:合并两个集合
function unionSets(node1, node2)
root1 = findParent(node1);
root2 = findParent(node2);
if root1 == root2
return;
end
if rank(root1) > rank(root2)
parent(root2) = root1;
elseif rank(root1) < rank(root2)
parent(root1) = root2;
else
parent(root1) = root2;
rank(root2) = rank(root2) + 1;
end
end
end
```
这个模板实现了克鲁斯卡尔算法,使用邻接矩阵作为输入。它首先将边的信息存储在一个列表中,并按照权重进行排序。然后使用并查集来判断是否形成环路,并将不形成环路的边添加到最小生成树中。最后返回最小生成树的邻接矩阵表示和总权重。你可以根据自己的需要进行适当修改和调整。
克鲁斯卡尔最小生成树算法 matlab实现
克鲁斯卡尔算法是一种用于求解最小生成树的算法,下面是一个用 Matlab 实现的示例代码:
```matlab
function [MST, totalWeight] = KruskalMST(adjMatrix)
n = size(adjMatrix, 1);
edges = [];
% 构建边集合
for i = 1:n
for j = i+1:n
if adjMatrix(i, j) ~= 0
edges = [edges; i, j, adjMatrix(i, j)];
end
end
end
% 按权重从小到大排序
edges = sortrows(edges, 3);
parent = 1:n;
rank = zeros(1, n);
MST = zeros(n-1, 2);
totalWeight = 0;
idx = 1;
while idx <= size(edges, 1)
u = edges(idx, 1);
v = edges(idx, 2);
w = edges(idx, 3);
% 判断是否形成环路
rootU = findRoot(parent, u);
rootV = findRoot(parent, v);
if rootU ~= rootV
MST(idx, :) = [u, v];
totalWeight = totalWeight + w;
% 合并两个集合
if rank(rootU) > rank(rootV)
parent(rootV) = rootU;
elseif rank(rootU) < rank(rootV)
parent(rootU) = rootV;
else
parent(rootU) = rootV;
rank(rootV) = rank(rootV) + 1;
end
idx = idx + 1;
else
% 舍弃该边,避免形成环路
edges(idx, :) = [];
end
end
end
function root = findRoot(parent, node)
while parent(node) ~= node
parent(node) = parent(parent(node));
node = parent(node);
end
root = node;
end
```
在上述代码中,`adjMatrix` 是一个邻接矩阵,表示图的连接关系和权重。`MST` 返回最小生成树的边集合,`totalWeight` 返回最小生成树的总权重。
注意:这只是一个简单的实现示例,实际应用中可能需要根据具体需求进行优化和修改。
阅读全文
相关推荐















