利用xgb.cv,以测试集AUC为评价标准进行调参
时间: 2024-02-19 11:58:12 浏览: 180
好的,可以通过以下步骤来利用xgb.cv进行调参:
1. 导入必要的库和数据集,设置参数空间:
```python
import xgboost as xgb
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import roc_auc_score
data = load_breast_cancer()
X = data.data
y = data.target
params = {
'max_depth': [2, 4, 6],
'n_estimators': [50, 100, 200],
'learning_rate': [0.01, 0.1, 1]
}
```
2. 使用xgb.cv进行交叉验证,并计算测试集AUC:
```python
clf = xgb.XGBClassifier(objective='binary:logistic')
cv_results = xgb.cv(
params=params,
dtrain=xgb.DMatrix(X, label=y),
num_boost_round=1000,
nfold=5,
early_stopping_rounds=10,
metrics='auc'
)
# 计算测试集AUC
test_auc = cv_results['test-auc-mean'].iloc[-1]
print(f"测试集AUC: {test_auc:.4f}")
```
3. 使用GridSearchCV进行网格搜索,寻找最优参数组合:
```python
clf = xgb.XGBClassifier(objective='binary:logistic')
grid_search = GridSearchCV(
estimator=clf,
param_grid=params,
cv=5,
scoring='roc_auc'
)
grid_search.fit(X, y)
# 输出最优参数组合和对应的AUC
print(f"最优参数组合: {grid_search.best_params_}")
print(f"最优AUC: {grid_search.best_score_:.4f}")
```
通过以上步骤,你就可以利用xgb.cv进行调参,并使用测试集AUC作为评价标准了。
阅读全文