请编写一个keras框架下的cnn,实现对格式为csv的三维时序信号去噪,具体包括x方向,y方向,z方向的时序信号,计算去噪后的SNR,MSE,PSNR并生成csv文件保存
时间: 2023-06-15 20:05:34 浏览: 66
使用指标评估去噪算法的性能:MSE、MAE、SNR、PSNR 和互相关:此代码计算指标 MSE、MAE、SNR、PSNR 和互相关系数。-matlab开发
好的,我可以为您提供代码示例。首先,我们需要安装必要的库,包括numpy、pandas、tensorflow和sklearn:
```
!pip install numpy pandas tensorflow sklearn
```
然后,我们可以按照以下步骤编写CNN模型:
1. 导入必要的库
```python
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score, mean_squared_log_error
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv1D, MaxPooling1D, Flatten
```
2. 定义读取csv文件的函数
```python
def read_csv(filename):
df = pd.read_csv(filename, header=None)
data = df.values
data = data.reshape(data.shape[0], data.shape[1]//3, 3)
return data
```
3. 定义计算SNR、MSE和PSNR的函数
```python
def calculate_metrics(y_true, y_pred):
snr = 10 * np.log10(np.mean(np.square(y_true)) / np.mean(np.square(y_true - y_pred)))
mse = mean_squared_error(y_true, y_pred)
psnr = 10 * np.log10(np.max(y_true) / mse)
return snr, mse, psnr
```
4. 加载数据并拆分训练集和测试集
```python
data = read_csv('data.csv')
X_train, X_test, y_train, y_test = train_test_split(data[:, :, :-1], data[:, :, -1], test_size=0.2, random_state=42)
```
5. 定义CNN模型
```python
model = Sequential()
model.add(Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=X_train.shape[1:]))
model.add(MaxPooling1D(pool_size=2))
model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Conv1D(filters=128, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
```
6. 训练模型并计算性能指标
```python
history = model.fit(X_train, y_train, epochs=50, batch_size=32, validation_data=(X_test, y_test))
y_pred = model.predict(X_test)
snr, mse, psnr = calculate_metrics(y_test, y_pred)
print('SNR: ', snr)
print('MSE: ', mse)
print('PSNR: ', psnr)
```
7. 保存结果到csv文件
```python
result = pd.DataFrame({'SNR': [snr], 'MSE': [mse], 'PSNR': [psnr]})
result.to_csv('result.csv', index=False)
```
完整代码如下:
阅读全文