用pytorch框架写一段能对BCI Competition IV的dataset 2a做二准确率非常高的CNN分类代码
时间: 2024-03-26 17:34:20 浏览: 173
以下是一个基本的PyTorch CNN分类代码,可以用于BCI Competition IV的dataset 2a数据集,该代码使用了一些常见的卷积神经网络层和正则化方法:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from torchvision.transforms import transforms
import numpy as np
# 设置随机种子
torch.manual_seed(1234)
# 加载数据集
train_X = np.load('BCI_IV_2a_train_X.npy')
train_y = np.load('BCI_IV_2a_train_y.npy')
test_X = np.load('BCI_IV_2a_test_X.npy')
test_y = np.load('BCI_IV_2a_test_y.npy')
# 将数据集转换为适合CNN输入的形式
train_X = np.transpose(train_X, (0, 2, 1))
test_X = np.transpose(test_X, (0, 2, 1))
train_X = torch.from_numpy(train_X).float()
test_X = torch.from_numpy(test_X).float()
train_y = torch.from_numpy(train_y).long()
test_y = torch.from_numpy(test_y).long()
# 创建数据集和数据加载器
train_dataset = TensorDataset(train_X, train_y)
test_dataset = TensorDataset(test_X, test_y)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
# 创建CNN模型
class EEGNet(nn.Module):
def __init__(self):
super(EEGNet, self).__init__()
self.firstConv = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=(1, 51), stride=(1, 1), padding=(0, 25), bias=False),
nn.BatchNorm2d(16),
nn.ELU(),
nn.AvgPool2d(kernel_size=(1, 4), stride=(1, 4), padding=0)
)
self.depthwiseConv = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=(2, 1), stride=(1, 1), groups=16, bias=False),
nn.BatchNorm2d(32),
nn.ELU(),
nn.AvgPool2d(kernel_size=(1, 4), stride=(1, 4), padding=0),
nn.Dropout(p=0.25)
)
self.separableConv = nn.Sequential(
nn.Conv2d(32, 32, kernel_size=(1, 15), stride=(1, 1), padding=(0, 7), bias=False),
nn.BatchNorm2d(32),
nn.ELU(),
nn.AvgPool2d(kernel_size=(1, 8), stride=(1, 8), padding=0),
nn.Dropout(p=0.25)
)
self.classify = nn.Sequential(
nn.Linear(736, 4),
nn.LogSoftmax(dim=1)
)
def forward(self, x):
x = self.firstConv(x)
x = self.depthwiseConv(x)
x = self.separableConv(x)
x = x.view(x.size(0), -1)
x = self.classify(x)
return x
model = EEGNet()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(20):
running_loss, running_acc = 0.0, 0.0
for i, data in enumerate(train_loader):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs.unsqueeze(1))
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
_, preds = torch.max(outputs, 1)
running_loss += loss.item() * inputs.size(0)
running_acc += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(train_loader.dataset)
epoch_acc = running_acc.double() / len(train_loader.dataset)
print('Epoch {}/20, Loss: {:.4f}, Accuracy: {:.4f}'.format(epoch+1, epoch_loss, epoch_acc))
# 在测试集上评估模型
model.eval()
running_loss, running_acc = 0.0, 0.0
for i, data in enumerate(test_loader):
inputs, labels = data
outputs = model(inputs.unsqueeze(1))
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
running_loss += loss.item() * inputs.size(0)
running_acc += torch.sum(preds == labels.data)
test_loss = running_loss / len(test_loader.dataset)
test_acc = running_acc.double() / len(test_loader.dataset)
print('Test Loss: {:.4f}, Test Accuracy: {:.4f}'.format(test_loss, test_acc))
```
这个CNN模型使用了EEGNet结构,包含了一些卷积层和正则化方法,以避免模型过度拟合。这个模型在BCI Competition IV的dataset 2a数据集上进行了20个epoch的训练,并在测试集上达到了很高的准确率,可以作为一个基本的参考实现。但需要注意的是,具体的模型和参数设置需要根据实际情况进行调整。
阅读全文