norm.list <- vector('list')
时间: 2024-01-19 08:05:15 浏览: 134
这行代码定义了一个空的列表对象 norm.list,可以用来存储一些数据或对象。列表是一种非常常用的数据结构,它可以包含不同类型的对象,包括向量、矩阵、数据框、列表等。在 R 中,使用 vector('list') 可以创建一个空的列表,然后可以通过赋值或者 append 等方式向其中添加元素。例如,可以通过以下代码向 norm.list 中添加两个向量对象:
```
norm.list[[1]] <- c(1, 2, 3)
norm.list[[2]] <- c(4, 5, 6)
```
这样,norm.list 就包含了两个向量对象,可以通过 norm.list[[1]] 和 norm.list[[2]] 访问它们。
相关问题
k = 3 rnd = 0 ROUND_LIMIT = 10 THRESHOLD = 1e-10 melons = [] clusters = [] f = open('melons.txt', 'r') for line in f: melons.append(np.array(line.split(' '), dtype = np.string_).astype(np.float64)) mean_vectors = random.sample(melons, k) while True: rnd += 1 change = 0 clusters = [] for i in range(k): clusters.append([]) for melon in melons: c = np.argmin( list(map( lambda vec: np.linalg.norm(melon - vec, ord = 2), mean_vectors)) ) clusters[c].append(melon) for i in range(k): new_vector = np.zeros((1,2)) for melon in clusters[i]: new_vector += melon new_vector /= len(clusters[i]) change += np.linalg.norm(mean_vectors[i] - new_vector, ord = 2) mean_vectors[i] = new_vector if rnd > ROUND_LIMIT or change < THRESHOLD: break print('最终迭代%d轮'%rnd) colors = ['red', 'green', 'black'] for i, col in zip(range(k), colors): for melon in clusters[i]: plt.scatter(melon[0], melon[1], color = col) plt.show()
这段代码是 K-means 聚类算法的实现,它的作用是将 melons.txt 文件中的数据分成 k 个簇。其中,k=3 表示聚成三个簇,ROUND_LIMIT=10 表示最多迭代十次,THRESHOLD=1e-10 表示当簇中心向量的变化小于 1e-10 时停止迭代。
首先,代码读取文件 melons.txt 中的数据,将其存储在名为 melons 的列表中。然后,从 melons 中随机选择 k 个数据作为初始簇中心向量 mean_vectors。接着,进入循环,将数据分配到离其最近的簇中去,计算每个簇的新中心向量,如果中心向量的变化小于 THRESHOLD,则停止迭代。最后,将聚类结果用散点图显示出来。
需要注意的是,本段代码中并没有对聚类的效果进行评估和调参,因此其聚类效果可能不是最优的。
np.linalg.norm和torch.norm
回答: np.linalg.norm()和torch.norm()都是用来计算向量或矩阵的范数的函数,但它们来自不同的库。np.linalg.norm()是NumPy库中的函数,而torch.norm()是PyTorch库中的函数。
两个函数的使用方式和参数略有不同。np.linalg.norm()可以用于计算向量或矩阵的范数,可以通过指定参数来选择不同的范数类型,比如默认的2范数(欧几里得范数),1范数(绝对值之和),无穷范数(最大绝对值)。而torch.norm()的使用方式类似,但它是针对PyTorch张量进行操作的。torch.norm()可以计算向量或矩阵的范数,同样可以通过指定参数来选择不同的范数类型。
不过需要注意的是,torch.norm()有一些特殊的用法和替代函数。根据引用,torch.norm()在最新的版本中已经被弃用,推荐使用torch.linalg.norm()来计算向量或矩阵的范数。而引用中提到的torch.linalg.vector_norm()可以用来计算向量范数,torch.linalg.matrix_norm()可以用来计算矩阵范数。这些函数可以在PyTorch中更精确地计算范数。
综上所述,np.linalg.norm()和torch.norm()都是用来计算向量或矩阵范数的函数,但使用方法和参数略有不同。在PyTorch中,推荐使用torch.linalg.norm()、torch.linalg.vector_norm()和torch.linalg.matrix_norm()来替代torch.norm()函数。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [ torch.linalg.norm() 和 torch.linalg.vector_norm() 和 torch.linalg.matrix_norm()](https://blog.csdn.net/Aaron_neil/article/details/128427467)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文