iters: 500, epoch: 1 | loss: nan speed: 0.8610s/iter; left time: 14242.1747s
时间: 2023-06-11 18:09:37 浏览: 163
这看起来像是训练神经网络时遇到的问题。通常情况下,当损失值为NaN时,表示出现了数值不稳定的情况,可能是由于梯度爆炸或消失引起的。
你可以尝试一些方法来解决这个问题:
1. 检查是否有输入数据存在缺失值或异常值,如果有,需要进行数据清洗。
2. 尝试使用更小的学习率。
3. 尝试使用不同的优化器。
4. 尝试使用不同的损失函数。
5. 尝试调整神经网络的结构,如增加或减少隐藏层的数量。
希望这些方法能够帮助你解决问题。
相关问题
给代码添加注释:class CosineAnnealingWarmbootingLR: def __init__(self, optimizer, epochs=0, eta_min=0.05, steps=[], step_scale=0.8, lf=None, batchs=0, warmup_epoch=0, epoch_scale=1.0): self.warmup_iters = batchs * warmup_epoch self.optimizer = optimizer self.eta_min = eta_min self.iters = -1 self.iters_batch = -1 self.base_lr = [group['lr'] for group in optimizer.param_groups] self.step_scale = step_scale steps.sort() self.steps = [warmup_epoch] + [i for i in steps if (i < epochs and i > warmup_epoch)] + [epochs] self.gap = 0 self.last_epoch = 0 self.lf = lf self.epoch_scale = epoch_scale for group in optimizer.param_groups: group.setdefault('initial_lr', group['lr']) def step(self, external_iter = None): self.iters += 1 if external_iter is not None: self.iters = external_iter iters = self.iters + self.last_epoch scale = 1.0 for i in range(len(self.steps)-1): if (iters <= self.steps[i+1]): self.gap = self.steps[i+1] - self.steps[i] iters = iters - self.steps[i] if i != len(self.steps)-2: self.gap += self.epoch_scale break scale *= self.step_scale if self.lf is None: for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = scale * lr * ((((1 + math.cos(iters * math.pi / self.gap)) / 2) ** 1.0) * (1.0 - self.eta_min) + self.eta_min) else: for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = scale * lr * self.lf(iters, self.gap) return self.optimizer.param_groups[0]['lr'] def step_batch(self): self.iters_batch += 1 if self.iters_batch < self.warmup_iters: rate = self.iters_batch / self.warmup_iters for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = lr * rate return self.optimizer.param_groups[0]['lr'] else: return None
这是一个用于实现余弦退火学习率调整的类,可以在训练神经网络时使用。它可以根据训练的迭代次数自动调整学习率,以便更好地训练模型。具体来说,它使用余弦函数来调整学习率,以便在训练过程中逐渐减小学习率,从而更好地控制模型的训练过程。
代码解释并给每行代码添加注释:class CosineAnnealingWarmbootingLR: def __init__(self, optimizer, epochs=0, eta_min=0.05, steps=[], step_scale=0.8, lf=None, batchs=0, warmup_epoch=0, epoch_scale=1.0): self.warmup_iters = batchs * warmup_epoch self.optimizer = optimizer self.eta_min = eta_min self.iters = -1 self.iters_batch = -1 self.base_lr = [group['lr'] for group in optimizer.param_groups] self.step_scale = step_scale steps.sort() self.steps = [warmup_epoch] + [i for i in steps if (i < epochs and i > warmup_epoch)] + [epochs] self.gap = 0 self.last_epoch = 0 self.lf = lf self.epoch_scale = epoch_scale for group in optimizer.param_groups: group.setdefault('initial_lr', group['lr']) def step(self, external_iter = None): self.iters += 1 if external_iter is not None: self.iters = external_iter iters = self.iters + self.last_epoch scale = 1.0 for i in range(len(self.steps)-1): if (iters <= self.steps[i+1]): self.gap = self.steps[i+1] - self.steps[i] iters = iters - self.steps[i] if i != len(self.steps)-2: self.gap += self.epoch_scale break scale *= self.step_scale if self.lf is None: for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = scale * lr * ((((1 + math.cos(iters * math.pi / self.gap)) / 2) ** 1.0) * (1.0 - self.eta_min) + self.eta_min) else: for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = scale * lr * self.lf(iters, self.gap) return self.optimizer.param_groups[0]['lr'] def step_batch(self): self.iters_batch += 1 if self.iters_batch < self.warmup_iters: rate = self.iters_batch / self.warmup_iters for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = lr * rate return self.optimizer.param_groups[0]['lr'] else: return None
这是一个名为 CosineAnnealingWarmbootingLR 的类,用于实现余弦退火学习率调整。以下是每行代码的注释:
class CosineAnnealingWarmbootingLR:
def __init__(self, optimizer, epochs=0, eta_min=0.05, steps=[], step_scale=0.8, lf=None, batchs=0, warmup_epoch=0, epoch_scale=1.0):
# 初始化函数,接受一些参数
self.warmup_iters = batchs * warmup_epoch # 热身迭代次数
self.optimizer = optimizer # 优化器
self.eta_min = eta_min # 最小学习率
self.iters = -1 # 当前迭代次数
self.iters_batch = -1 # 当前批次迭代次数
self.base_lr = [group['lr'] for group in optimizer.param_groups] # 初始学习率
self.step_scale = step_scale # 步长缩放因子
steps.sort() # 步长列表排序
self.steps = [warmup_epoch] + [i for i in steps if (i < epochs and i > warmup_epoch)] + [epochs] # 步长列表
self.gap = 0 # 步长间隔
self.last_epoch = 0 # 上一个 epoch
self.lf = lf # 学习率函数
self.epoch_scale = epoch_scale # epoch 缩放因子
for group in optimizer.param_groups:
group.setdefault('initial_lr', group['lr']) # 设置默认初始学习率
def step(self, external_iter=None):
# 学习率调整函数
self.iters = 1 # 当前迭代次数
if external_iter is not None:
self.iters = external_iter
iters = self.iters - self.warmup_iters # 当前迭代次数减去热身迭代次数
last_epoch = self.last_epoch # 上一个 epoch
scale = 1.0 # 缩放因子
for i in range(len(self.steps)-1):
if (iters <= self.steps[i+1]):
self.gap = self.steps[i+1] - self.steps[i] # 步长间隔
iters = iters - self.steps[i] # 当前迭代次数减去当前步长
last_epoch = self.steps[i] # 上一个 epoch
if i != len(self.steps)-2:
self.gap *= self.epoch_scale # 如果不是最后一个步长,乘以 epoch 缩放因子
break
scale *= self.step_scale # 缩放因子乘以步长缩放因子
if self.lf is None:
for group, lr in zip(self.optimizer.param_groups, self.base_lr):
group['lr'] = scale * lr * ((((1 - math.cos(iters * math.pi / self.gap)) / 2) ** 1.0) * (1.0 - self.eta_min) + self.eta_min) # 计算学习率
else:
for group, lr in zip(self.optimizer.param_groups, self.base_lr):
group['lr'] = scale * lr * self.lf(iters, self.gap) # 使用学习率函数计算学习率
self.last_epoch = last_epoch # 更新上一个 epoch
return self.optimizer.param_groups[0]['lr'] # 返回学习率
def step_batch(self):
# 批次学习率调整函数
self.iters_batch = 1 # 当前批次迭代次数
if self.iters_batch < self.warmup_iters:
rate = self.iters_batch / self.warmup_iters # 计算学习率缩放因子
for group, lr in zip(self.optimizer.param_groups, self.base_lr):
group['lr'] = lr * rate # 缩放学习率
return self.optimizer.param_groups[0]['lr'] # 返回学习率
else:
return None # 如果已经完成热身,返回 None
阅读全文