用C++编写strassen矩阵乘法分治法
时间: 2024-05-05 10:20:56 浏览: 111
以下是使用C语言编写的Strassen矩阵乘法分治法的示例代码:
```c
#include <stdio.h>
#include <stdlib.h>
void matrix_add(int n, int **a, int **b, int **c) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
c[i][j] = a[i][j] + b[i][j];
}
}
}
void matrix_sub(int n, int **a, int **b, int **c) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
c[i][j] = a[i][j] - b[i][j];
}
}
}
void matrix_multiply_simple(int n, int **a, int **b, int **c) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
c[i][j] = 0;
for (int k = 0; k < n; k++) {
c[i][j] += a[i][k] * b[k][j];
}
}
}
}
void matrix_multiply_strassen(int n, int **a, int **b, int **c) {
if (n <= 64) { // 使用普通矩阵乘法
matrix_multiply_simple(n, a, b, c);
return;
}
int **a11 = (int **) malloc(n / 2 * sizeof(int *));
int **a12 = (int **) malloc(n / 2 * sizeof(int *));
int **a21 = (int **) malloc(n / 2 * sizeof(int *));
int **a22 = (int **) malloc(n / 2 * sizeof(int *));
int **b11 = (int **) malloc(n / 2 * sizeof(int *));
int **b12 = (int **) malloc(n / 2 * sizeof(int *));
int **b21 = (int **) malloc(n / 2 * sizeof(int *));
int **b22 = (int **) malloc(n / 2 * sizeof(int *));
int **c11 = (int **) malloc(n / 2 * sizeof(int *));
int **c12 = (int **) malloc(n / 2 * sizeof(int *));
int **c21 = (int **) malloc(n / 2 * sizeof(int *));
int **c22 = (int **) malloc(n / 2 * sizeof(int *));
int **m1 = (int **) malloc(n / 2 * sizeof(int *));
int **m2 = (int **) malloc(n / 2 * sizeof(int *));
int **m3 = (int **) malloc(n / 2 * sizeof(int *));
int **m4 = (int **) malloc(n / 2 * sizeof(int *));
int **m5 = (int **) malloc(n / 2 * sizeof(int *));
int **m6 = (int **) malloc(n / 2 * sizeof(int *));
int **m7 = (int **) malloc(n / 2 * sizeof(int *));
for (int i = 0; i < n / 2; i++) {
a11[i] = (int *) malloc(n / 2 * sizeof(int));
a12[i] = (int *) malloc(n / 2 * sizeof(int));
a21[i] = (int *) malloc(n / 2 * sizeof(int));
a22[i] = (int *) malloc(n / 2 * sizeof(int));
b11[i] = (int *) malloc(n / 2 * sizeof(int));
b12[i] = (int *) malloc(n / 2 * sizeof(int));
b21[i] = (int *) malloc(n / 2 * sizeof(int));
b22[i] = (int *) malloc(n / 2 * sizeof(int));
c11[i] = (int *) malloc(n / 2 * sizeof(int));
c12[i] = (int *) malloc(n / 2 * sizeof(int));
c21[i] = (int *) malloc(n / 2 * sizeof(int));
c22[i] = (int *) malloc(n / 2 * sizeof(int));
m1[i] = (int *) malloc(n / 2 * sizeof(int));
m2[i] = (int *) malloc(n / 2 * sizeof(int));
m3[i] = (int *) malloc(n / 2 * sizeof(int));
m4[i] = (int *) malloc(n / 2 * sizeof(int));
m5[i] = (int *) malloc(n / 2 * sizeof(int));
m6[i] = (int *) malloc(n / 2 * sizeof(int));
m7[i] = (int *) malloc(n / 2 * sizeof(int));
}
// 将矩阵 a 和 b 拆分成四个子矩阵
for (int i = 0; i < n / 2; i++) {
for (int j = 0; j < n / 2; j++) {
a11[i][j] = a[i][j];
a12[i][j] = a[i][j + n / 2];
a21[i][j] = a[i + n / 2][j];
a22[i][j] = a[i + n / 2][j + n / 2];
b11[i][j] = b[i][j];
b12[i][j] = b[i][j + n / 2];
b21[i][j] = b[i + n / 2][j];
b22[i][j] = b[i + n / 2][j + n / 2];
}
}
// 计算七个子矩阵的乘积
matrix_add(n / 2, a11, a22, m1);
matrix_add(n / 2, b11, b22, m2);
matrix_multiply_strassen(n / 2, m1, m2, c11);
matrix_add(n / 2, a21, a22, m1);
matrix_multiply_strassen(n / 2, m1, b11, c21);
matrix_sub(n / 2, b12, b22, m1);
matrix_multiply_strassen(n / 2, a11, m1, c12);
matrix_sub(n / 2, b21, b11, m1);
matrix_multiply_strassen(n / 2, a22, m1, c22);
matrix_add(n / 2, a11, a12, m1);
matrix_multiply_strassen(n / 2, m1, b22, m2);
matrix_sub(n / 2, c11, c12, m3);
matrix_add(n / 2, c21, m2, m4);
matrix_add(n / 2, c12, m2, m5);
matrix_sub(n / 2, a21, a11, m1);
matrix_add(n / 2, b11, b12, m2);
matrix_multiply_strassen(n / 2, m1, m2, m6);
matrix_sub(n / 2, c22, m5, m7);
// 计算结果矩阵
matrix_add(n / 2, m3, m5, c11);
matrix_add(n / 2, m4, m6, c12);
matrix_add(n / 2, m1, m5, c21);
matrix_add(n / 2, m2, m7, c22);
for (int i = 0; i < n / 2; i++) {
for (int j = 0; j < n / 2; j++) {
c[i][j] = c11[i][j];
c[i][j + n / 2] = c12[i][j];
c[i + n / 2][j] = c21[i][j];
c[i + n / 2][j + n / 2] = c22[i][j];
}
}
// 释放内存
for (int i = 0; i < n / 2; i++) {
free(a11[i]);
free(a12[i]);
free(a21[i]);
free(a22[i]);
free(b11[i]);
free(b12[i]);
free(b21[i]);
free(b22[i]);
free(c11[i]);
free(c12[i]);
free(c21[i]);
free(c22[i]);
free(m1[i]);
free(m2[i]);
free(m3[i]);
free(m4[i]);
free(m5[i]);
free(m6[i]);
free(m7[i]);
}
free(a11);
free(a12);
free(a21);
free(a22);
free(b11);
free(b12);
free(b21);
free(b22);
free(c11);
free(c12);
free(c21);
free(c22);
free(m1);
free(m2);
free(m3);
free(m4);
free(m5);
free(m6);
free(m7);
}
int main() {
int n = 4;
int **a = (int **) malloc(n * sizeof(int *));
int **b = (int **) malloc(n * sizeof(int *));
int **c = (int **) malloc(n * sizeof(int *));
for (int i = 0; i < n; i++) {
a[i] = (int *) malloc(n * sizeof(int));
b[i] = (int *) malloc(n * sizeof(int));
c[i] = (int *) malloc(n * sizeof(int));
}
a[0][0] = 1;
a[0][1] = 2;
a[0][2] = 3;
a[0][3] = 4;
a[1][0] = 5;
a[1][1] = 6;
a[1][2] = 7;
a[1][3] = 8;
a[2][0] = 9;
a[2][1] = 10;
a[2][2] = 11;
a[2][3] = 12;
a[3][0] = 13;
a[3][1] = 14;
a[3][2] = 15;
a[3][3] = 16;
b[0][0] = 17;
b[0][1] = 18;
b[0][2] = 19;
b[0][3] = 20;
b[1][0] = 21;
b[1][1] = 22;
b[1][2] = 23;
b[1][3] = 24;
b[2][0] = 25;
b[2][1] = 26;
b[2][2] = 27;
b[2][3] = 28;
b[3][0] = 29;
b[3][1] = 30;
b[3][2] = 31;
b[3][3] = 32;
matrix_multiply_strassen(n, a, b, c);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
printf("%d ", c[i][j]);
}
printf("\n");
}
for (int i = 0; i < n; i++) {
free(a[i]);
free(b[i]);
free(c[i]);
}
free(a);
free(b);
free(c);
return 0;
}
```
在此示例代码中,`matrix_add()`和`matrix_sub()`函数分别实现矩阵加法和减法,`matrix_multiply_simple()`函数实现普通的矩阵乘法,`matrix_multiply_strassen()`函数实现Strassen矩阵乘法分治法。
在`matrix_multiply_strassen()`函数中,当矩阵维度小于等于64时,使用普通矩阵乘法,否则将矩阵拆分成四个子矩阵,分别计算七个子矩阵的乘积,然后计算结果矩阵。
在`main()`函数中,我们初始化两个矩阵`a`和`b`,然后调用`matrix_multiply_strassen()`函数计算它们的乘积。最后,我们输出结果矩阵并释放内存。
注意,此示例代码仅适用于矩阵维度为2的幂次方的情况。如果矩阵维度不是2的幂次方,则需要用0填充矩阵的右下角,使其成为2的幂次方。
阅读全文