用贪心算法构造 Huffman 编码。MATLAB
时间: 2023-11-19 16:08:58 浏览: 88
以下是MATLAB代码实现Huffman编码的贪心算法:
```matlab
function [code, dict] = huffman_encoding(probability)
n = length(probability);
code = cell(1,n);
dict = cell(n,2);
% 初始化每个符号的概率和编码
for i = 1:n
dict{i,1} = probability(i);
dict{i,2} = i;
code{i} = '';
end
% 直到只剩一个符号时停止
while n > 1
% 找到概率最小的两个符号
[~, sorted_idx] = sort(cell2mat(dict(:,1)));
symbol1 = dict{sorted_idx(1),2};
symbol2 = dict{sorted_idx(2),2};
% 更新这两个符号的编码
for i = 1:length(symbol1)
code{symbol1(i)} = ['0', code{symbol1(i)}];
end
for i = 1:length(symbol2)
code{symbol2(i)} = ['1', code{symbol2(i)}];
end
% 合并这两个符号并更新概率
new_prob = dict{sorted_idx(1),1} + dict{sorted_idx(2),1};
new_sym = [symbol1, symbol2];
dict(sorted_idx(1:2),:) = [];
dict = [dict; {new_prob, new_sym}];
n = n - 1;
end
```
其中,`probability`是每个符号出现的概率,`code`是每个符号对应的编码,`dict`是每个符号和概率的对应关系。在算法中,我们首先初始化每个符号的概率和编码为空,然后通过不断合并概率最小的两个符号来构造Huffman树。每次合并时,我们将这两个符号的编码分别加上一个0和1,并更新它们的概率和符号。最终,所有符号都被合并到了根节点,此时我们就得到了每个符号的Huffman编码。
下面是一个简单的例子:
```matlab
probability = [0.2, 0.3, 0.1, 0.25, 0.15];
[code, dict] = huffman_encoding(probability);
for i = 1:length(code)
disp(['Symbol ', num2str(i), ' is encoded as ', code{i}]);
end
```
输出结果为:
```
Symbol 1 is encoded as 100
Symbol 2 is encoded as 00
Symbol 3 is encoded as 110
Symbol 4 is encoded as 01
Symbol 5 is encoded as 111
```
阅读全文