在matlab上用.mat的PR数据绘制PR曲线图

时间: 2023-12-17 16:03:08 浏览: 171
你可以使用以下代码在MATLAB中绘制PR曲线图: ```matlab load('data.mat'); % 加载包含PR数据的.mat文件 precision = data(:,1); % 精确度数据 recall = data(:,2); % 召回率数据 plot(recall, precision); % 绘制PR曲线 xlabel('Recall'); % 设置x轴标签 ylabel('Precision'); % 设置y轴标签 title('PR Curve'); % 设置图表标题 ``` 请注意,这里假设你的.mat文件中包含一个名为“data”的数组,其中第一列为精确度数据,第二列为召回率数据。如果你的数据不是这种格式,请相应地调整代码。
相关问题

matlab根据多分类混淆矩阵绘制PR曲线

在 MATLAB 中,可以使用以下步骤绘制多分类的 PR 曲线: 1. 计算多分类混淆矩阵,可以使用 `confusionmat` 函数。 2. 计算每个类别的精度和召回率。 3. 对于每个类别,画出它的 PR 曲线。 4. 将所有类别的曲线组合成一个图。 下面是一个示例代码,假设有 4 个类别: ```matlab % 生成随机分类结果 true_labels = randi([1, 4], [100, 1]); predicted_labels = randi([1, 4], [100, 1]); % 计算多分类混淆矩阵 conf_mat = confusionmat(true_labels, predicted_labels); % 计算每个类别的精度和召回率 for i = 1:4 tp = conf_mat(i, i); fp = sum(conf_mat(:, i)) - tp; fn = sum(conf_mat(i, :)) - tp; precision(i) = tp / (tp + fp); recall(i) = tp / (tp + fn); end % 绘制PR曲线 figure; hold on; for i = 1:4 plot(recall(i), precision(i), 'o'); end % 添加标签和标题 xlabel('Recall'); ylabel('Precision'); title('PR Curve'); legend('Class 1', 'Class 2', 'Class 3', 'Class 4'); ``` 在上面的代码中,我们首先生成了随机分类结果,然后使用 `confusionmat` 函数计算多分类混淆矩阵。接下来,我们计算每个类别的精度和召回率,然后用 `plot` 函数画出每个类别的 PR 曲线。最后,我们添加标签和标题,并使用 `legend` 函数添加每个类别的标签。

MATLAB怎么画pr曲线

MATLAB中绘制Precision-Recall (PR) 曲线通常用于评估分类模型的性能,尤其是在不平衡数据集上。下面是创建PR曲线的基本步骤: 1. **导入数据和预测结果**: 首先,你需要有实际的标签(ground truth labels)以及模型的预测概率或类别。假设`y_true`是真实标签数组,而`y_pred_prob`是模型对正类的概率预测。 ```matlab load('your_dataset.mat'); % 从文件加载数据 y_true = ...; % 真实标签 y_pred_prob = ...; % 模型预测的概率值 ``` 2. **计算 Precision 和 Recall**: 使用`confusionmat`函数得到混淆矩阵,然后根据需要转换为 Precision 和 Recall。例如,对于二分类问题,你可以使用`binaryLabels`选项。 ```matlab [~, prec, recall, ~] = confusionmat(y_true, find(y_pred_prob > 0.5), 'Positive', 1); ``` 3. **绘制 PR 曲线**: 使用`plot`函数绘制 Precision 对于不同 Recall 的点,并添加线性拟合,显示曲线。这里我们可以使用` stairs`函数表示每个 Recall 值对应的 Precision,因为 PR 曲线通常是阶梯状的。 ```matlab prec = prec(2:end); % 去除第一个值(一般为0) recall = recall(2:end); stairs(recall, prec, 'b-o') % 绘制 PR 曲线 xlabel('Recall') ylabel('Precision') title('Precision vs. Recall Curve') hold on fitLine = polyfit(recall, prec, 1); % 计算线性回归 plot(fitLine(1)*recall + fitLine(2), 'r--', 'LineWidth', 2) % 添加拟合线 hold off ``` 4. **保存和展示**: 最后,可以使用`saveas`或直接在MATLAB环境中预览图像。 ```matlab print('-dpng', 'pr_curve.png') % 保存为PNG文件 ```
阅读全文

相关推荐

clc; clear all; %% 导入模型 load('./模型New/model_pot_final.mat') disp(detector) % 训练损失曲线 figure() plot(info.TrainingLoss) grid on xlabel('Number of Iterations') ylabel('Training Loss for Each Iteration') %% 导入数据集 load('data400.mat'); % 路径修改 for i = 1:size(data400, 1) originPath = string(table2cell(data400(i, 1))); newPath = strrep(originPath, 'F:\other\myMatlab\29光伏图像\程序','.'); disp(newPath) data400(i, 1) = cell2table(cellstr(newPath)); end len = (size(data400, 1))/2; percent = 0.6; % 划分测试集 potData = data400(len+1:end, [1 3]); trainLen = round(len*percent); testImg = potData([(trainLen+1):len], 1:2); %% 检测 imds = imageDatastore(testImg.imageFilename); results = detect(detector, imds); blds = boxLabelDatastore(testImg(:,2:end)); [ap, recall, precision] = evaluateDetectionPrecision(results, blds); % PR图 figure(); plot(recall, precision); grid on title(sprintf('Average precision = %.4f', ap)) % 检测效果图(分两张图) figure() for i = 1:size(testImg, 1)/2 subplot(4,10,i) path = string(table2cell(testImg(i, 1))); disp(path) img = imread(path); % 测试图片 [bboxes, scores] = detect(detector, img); if(~isempty(bboxes)) img = insertObjectAnnotation(img,'rectangle',bboxes,scores); end imshow(img) titleName = strrep(path, '.\数据集\process\',''); titleName = strrep(titleName, '_',''); titleName = strrep(titleName, '.png',''); title(titleName) end figure() for i = 1:size(testImg, 1)/2 subplot(4,10,i) path = string(table2cell(testImg((i+size(testImg, 1)/2), 1))); disp(path) img = imread(path); % 测试图片 [bboxes, scores] = detect(detector, img); if(~isempty(bboxes)) img = insertObjectAnnotation(img,'rectangle',bboxes,scores); end imshow(img) titleName = strrep(path, '.\数据集\process\',''); titleName = strrep(titleName, '_',''); titleName = strrep(titleName, '.png',''); title(titleName) end给我非常详细的,一字一句,一句一句的解释这段代码

zip

大家在看

recommend-type

CST PCB电磁兼容解决方案

印制电路板(PCB:Printed Circuit Board)目前已广泛应用于电子产品中。随着电子技术的飞速发展,芯片的频率越来越高,PCB,特别是高速PCB面临着各种电磁兼容问题。传统的基于路的分析方法已经不能准确地描述PCB上各走线的传输特性,因此需要采用基于电磁场的分析方法充分考虑PCB上各分布式参数来分析PCB的电磁兼容问题。   CST是目前的纯电磁场仿真软件公司。其产品广泛应用于通信、国防、自动化、电子和医疗设备等领域。2007年CST收购并控股了德国Simlab公司,将其下整个团队和软件全面纳入CST的管理和软件开发计划之中,同时在原有PCBMod软件基础上开发全新算法和功能
recommend-type

小华HC32L19X SPI 驱片外FLASH 例程

小华HC32L19X SPI 驱片外FLASH 例程
recommend-type

CISP-DSG 数据安全培训教材课件标准版

“ 注册数据安全治理专业人员”,英文为 Certified Information Security Professional - Data Security Governance , 简称 CISP-DSG , 是中国信息安全测评中心联合天融信开发的针对数据安全人才的培养认证, 是业界首个针对数据安全治理方向的国家级认证培训。 CISP-DSG 知识体系结构共包含四个知识类,分别为: 信息安全知识:主要包括信息安全保障、信息安全评估、网络安全监管、信息安全支撑技术相关的知识。 数据安全基础体系:主要包括结构化数据应用、非结构化数据应用、大数据应用、数据生命周期等相关的技术知识。 数据安全技术体系:主要包括数据安全风险、结构化数据安全技术、非结构数据安全技术、大数据安全技术、数据安全运维相关知识和实践。 数据安全管理体系:主要包括数据安全制度、数据安全标准、数据安全策略、数据安全规范、数据安全规划相关技术知识和实践。
recommend-type

微信hook(3.9.10.19)

微信hook(3.9.10.19)
recommend-type

汽车电子通信协议SAE J2284

改文档为美国汽车协会发布的通信网络物理层的协议

最新推荐

recommend-type

如何用matlab绘制电机效率map图或发动机万有特性曲线.docx

在本篇文章中,我们将探讨如何使用MATLAB绘制电机效率MAP图或发动机万有特性曲线。MATLAB作为一种强大的编程语言,提供了一系列的函数和工具来绘制不同形式的图形,包括等值线图、等高线图和二维图形等。 一、等值...
recommend-type

python读取.mat文件的数据及实例代码

在Python中,处理`.mat`文件通常涉及到科学计算和数据分析,因为这类文件通常存储的是MATLAB生成的数据。MATLAB文件格式用于保存变量、矩阵和其他数据结构,而Python中的Scipy库提供了读取这些文件的功能。以下是对...
recommend-type

matlab读取串口数据并显示曲线的实现示例

本文将详细介绍如何使用MATLAB实现这一功能,通过一个具体的示例来展示如何接收串口数据并绘制实时曲线。 首先,我们需要创建一个主文件,例如`serial_test2.m`。这个文件中定义了全局变量`t`、`x`、`m`和`ii`,...
recommend-type

Python实现读取txt文件中的数据并绘制出图形操作示例

Python是一种强大的编程语言,尤其在数据分析和可视化领域中广泛应用。本示例主要讲解如何使用Python读取txt文件中的数据,并利用这些数据绘制图形。在Python中,读取txt文件通常涉及`open()`函数和文件处理模式,而...
recommend-type

均匀线阵方向图Matlab程序.docx

均匀线阵方向图在天线阵列系统中有广泛的应用,如: *雷达系统:均匀线阵方向图可以用于雷达系统中的目标检测和跟踪。 *通信系统:均匀线阵方向图可以用于通信系统中的信号处理和接收。 *检测系统:均匀线阵方向图...
recommend-type

CentOS 6下Percona XtraBackup RPM安装指南

### Percona XtraBackup RPM安装知识点详解 #### 一、Percona XtraBackup简介 Percona XtraBackup是一个开源的MySQL数据库热备份工具,它能够进行非阻塞的备份,并支持复制和压缩功能,大大降低了备份过程对数据库性能的影响。该工具对MySQL以及衍生的数据库系统(如Percona Server和MariaDB)都非常友好,并广泛应用于需要高性能和备份安全性的生产环境中。 #### 二、Percona XtraBackup安装前提 1. **操作系统环境**:根据给出的文件信息,安装是在CentOS 6系统环境下进行的。CentOS 6已经到达其官方生命周期的终点,因此在生产环境中使用时需要考虑到安全风险。 2. **SELinux设置**:在安装Percona XtraBackup之前,需要修改`/etc/sysconfig/selinux`文件,将SELinux状态设置为`disabled`。SELinux是Linux系统下的一个安全模块,通过强制访问控制保护系统安全。禁用SELinux能够降低安装过程中由于安全策略造成的问题,但在生产环境中,建议仔细评估是否需要禁用SELinux,或者根据需要进行相应的配置调整。 #### 三、RPM安装过程说明 1. **安装包下载**:在安装Percona XtraBackup时,需要使用特定版本的rpm安装包,本例中为`percona-xtrabackup-24-2.4.5-1.el6.x86_64.rpm`。RPM(RPM包管理器)是一种在Linux系统上广泛使用的软件包管理器,其功能包括安装、卸载、更新和查询软件包。 2. **执行安装命令**:通过命令行执行rpm安装命令(例如:`rpm -ivh percona-xtrabackup-24-2.4.5-1.el6.x86_64.rpm`),这个命令会安装指定的rpm包到系统中。其中,`-i`代表安装(install),`-v`代表详细模式(verbose),`-h`代表显示安装进度(hash)。 #### 四、CentOS RPM安装依赖问题解决 在进行rpm安装过程中,可能会遇到依赖问题。系统可能提示缺少某些必要的库文件或软件包。安装文件名称列表提到了一个word文档,这很可能是解决此类依赖问题的步骤或说明文档。在CentOS中,可以通过安装`yum-utils`工具包来帮助解决依赖问题,例如使用`yum deplist package_name`查看依赖详情,然后使用`yum install package_name`来安装缺少的依赖包。此外,CentOS 6是基于RHEL 6,因此对于Percona XtraBackup这类较新的软件包,可能需要从Percona的官方仓库获取,而不是CentOS自带的旧仓库。 #### 五、CentOS 6与Percona XtraBackup版本兼容性 `percona-xtrabackup-24-2.4.5-1.el6.x86_64.rpm`表明该安装包对应的是Percona XtraBackup的2.4.5版本,适用于CentOS 6平台。因为CentOS 6可能不会直接支持Percona XtraBackup的最新版本,所以在选择安装包时需要确保其与CentOS版本的兼容性。对于CentOS 6,通常需要选择专门为老版本系统定制的软件包。 #### 六、Percona XtraBackup的高级功能 Percona XtraBackup不仅支持常规的备份和恢复操作,它还支持增量备份、压缩备份、流式备份和传输加密等高级特性。这些功能可以在安装文档中找到详细介绍,如果存在word文档说明解决问题的过程,则该文档可能也包含这些高级功能的配置和使用方法。 #### 七、安装后配置与使用 安装完成后,通常需要进行一系列配置才能使用Percona XtraBackup。这可能包括设置环境变量、编辑配置文件以及创建必要的目录和权限。关于如何操作这些配置,应该参考Percona官方文档或在word文档中查找详细步骤。 #### 八、维护与更新 安装后,应定期检查Percona XtraBackup的维护和更新,确保备份工具的功能与安全得到保障。这涉及到查询可用的更新版本,并根据CentOS的包管理器(如yum或rpm)更新软件包。 #### 总结 Percona XtraBackup作为一款强大的MySQL热备份工具,在生产环境中扮演着重要角色。通过RPM包在CentOS系统中安装该工具时,需要考虑操作系统版本、安全策略和依赖问题。在安装和配置过程中,应严格遵守官方文档或问题解决文档的指导,确保备份的高效和稳定。在实际应用中,还应根据实际需求进行配置优化,以达到最佳的备份效果。
recommend-type

【K-means与ISODATA算法对比】:聚类分析中的经典与创新

# 摘要 聚类分析作为数据挖掘中的重要技术,用于发现数据中的自然分布模式。本文首先介绍了聚类分析的基本概念及其意义,随后深入探讨了两种广泛使用的聚类算法:K-means和ISODATA。文章详细解析了这两个算法的原理、实现步骤及各自的优缺点,通过对比分析,展示了它们在不同场景下的适用性和性能差异。此外,本文还讨论了聚类算法的发展趋势,包括算法优化和新兴领域的应用前景。最
recommend-type

jupyter notebook没有opencv

### 如何在Jupyter Notebook中安装和使用OpenCV #### 使用`pip`安装OpenCV 对于大多数用户而言,最简单的方法是通过`pip`来安装OpenCV库。这可以通过运行以下命令完成: ```bash pip install opencv-python pip install opencv-contrib-python ``` 上述命令会自动处理依赖关系并安装必要的组件[^3]。 #### 利用Anaconda环境管理工具安装OpenCV 另一种推荐的方式是在Anaconda环境中安装OpenCV。这种方法的优势在于可以更好地管理和隔离不同项目的依赖项。具体
recommend-type

QandAs问卷平台:基于React和Koa的在线调查工具

### 知识点概述 #### 标题解析 **QandAs:一个问卷调查平台** 标题表明这是一个基于问卷调查的Web平台,核心功能包括问卷的创建、编辑、发布、删除及统计等。该平台采用了现代Web开发技术和框架,强调用户交互体验和问卷数据处理。 #### 描述详细解析 **使用React和koa构建的问卷平台** React是一个由Facebook开发和维护的JavaScript库,用于构建用户界面,尤其擅长于构建复杂的、数据频繁变化的单页面应用。该平台的前端使用React来实现动态的用户界面和组件化设计。 Koa是一个轻量级、高效、富有表现力的Web框架,用于Node.js平台。它旨在简化Web应用的开发,通过使用async/await,使得异步编程更加简洁。该平台使用Koa作为后端框架,处理各种请求,并提供API支持。 **在线演示** 平台提供了在线演示的链接,并附有访问凭证,说明这是一个开放给用户进行交互体验的问卷平台。 **产品特点** 1. **用户系统** - 包含注册、登录和注销功能,意味着用户可以通过这个平台进行身份验证,并在多个会话中保持登录状态。 2. **个人中心** - 用户可以修改个人信息,这通常涉及到用户认证模块,允许用户查看和编辑他们的账户信息。 3. **问卷管理** - 用户可以创建调查表,编辑问卷内容,发布问卷,以及删除不再需要的问卷。这一系列功能说明了平台提供了完整的问卷生命周期管理。 4. **图表获取** - 用户可以获取问卷的统计图表,这通常需要后端计算并结合前端可视化技术来展示数据分析结果。 5. **搜索与回答** - 用户能够搜索特定的问卷,并进行回答,说明了问卷平台应具备的基本互动功能。 **安装步骤** 1. **克隆Git仓库** - 使用`git clone`命令从GitHub克隆项目到本地。 2. **进入项目目录** - 通过`cd QandAs`命令进入项目文件夹。 3. **安装依赖** - 执行`npm install`来安装项目所需的所有依赖包。 4. **启动Webpack** - 使用Webpack命令进行应用的构建。 5. **运行Node.js应用** - 执行`node server/app.js`启动后端服务。 6. **访问应用** - 打开浏览器访问`http://localhost:3000`来使用应用。 **系统要求** - **Node.js** - 平台需要至少6.0版本的Node.js环境,Node.js是一个基于Chrome V8引擎的JavaScript运行环境,它使JavaScript能够在服务器端运行。 - **Webpack** - 作为现代JavaScript应用程序的静态模块打包器,Webpack可以将不同的模块打包成一个或多个包,并处理它们之间的依赖关系。 - **MongoDB** - 该平台需要MongoDB数据库支持,MongoDB是一个面向文档的NoSQL数据库,它使用易于理解的文档模型来存储数据,并且能够处理大量的数据和高并发读写。 #### 标签解析 - **React** - 应用的前端开发框架。 - **Redux** - 可能用于管理应用的状态,尽管在描述中没有提及,但标签的存在暗示了它可能被集成在项目中。 - **nodejs** - 表明整个平台是基于Node.js构建的。 - **koa** - 应用的后端开发框架。 - **questionnaire** - 强调该平台的主要用途是处理问卷。 - **KoaJavaScript** - 这个标签可能表明整个项目用JavaScript和Koa框架开发。 #### 压缩包子文件的文件名称列表 **QandAs-master** 这个文件名说明,这是该问卷平台项目的源代码仓库的主分支。在Git中,“master”通常是指主分支,包含了所有已经发布或准备发布的代码版本。 ### 结语 通过以上分析,QandAs这个问卷调查平台具备了完整的问卷生命周期管理功能,并使用了现代的前端和后端技术构建。它提供了一个便捷的在线问卷制作和数据分析平台,并且可以完全通过Git进行版本控制和源代码管理。开发者可以利用这个平台的标签和描述信息来理解项目结构和技术栈,以便进行学习、扩展或维护。
recommend-type

RLE编码与解码原理:揭秘BMP图像处理的关键步骤,提升解码效率

# 摘要 本文深入探讨了RLE(Run-Length Encoding)编码与解码的基础知识、原理和实现,以及其在BMP图像处理中的应用。RLE作为一种简单的无损数据压缩技术,通过识别数据中重复出现的序列来减少文件大小。本文详细解释了RLE的编码和解码原