报错`load_boston` has been removed from scikit-learn since version 1.2.
时间: 2024-01-06 20:56:25 浏览: 208
这个报错是因为从 Scikit-learn 1.2 开始,`load_boston` 已被移除。它是一个加载波士顿房价数据集的函数。如果你需要使用波士顿房价数据集,你可以使用以下代码:
``` python
from sklearn.datasets import fetch_openml
boston = fetch_openml(name='boston')
```
这个代码会从 OpenML 数据库中获取波士顿房价数据集,并将其作为一个 Bunch 对象返回。你可以使用`boston.data`来获取数据集的特征,使用`boston.target`来获取目标变量(即房价)。
相关问题
`load_boston` has been removed from scikit-learn since version 1.2.
I apologize for the confusion. You are correct, the `load_boston` function has been removed from scikit-learn since version 1.2. Instead, you can use the `fetch_openml` function to download the Boston dataset from the OpenML repository. Here's an example:
```python
from sklearn.datasets import fetch_openml
# Load the Boston dataset
boston = fetch_openml(data_id=531)
# Get the feature matrix and target vector
X = boston.data
y = boston.target
# Print the shape of the feature matrix and the first 5 rows
print(X.shape)
print(X[:5, :])
# Print the shape of the target vector and the first 5 elements
print(y.shape)
print(y[:5])
```
In this example, we use the `fetch_openml` function to download the Boston dataset. Then, we extract the feature matrix `X` and the target vector `y` from the downloaded dataset.
Please make sure you have scikit-learn version 1.2 or later installed in your Python environment to use this method. If you encounter any issues or have further questions, feel free to ask.
load_boston has been removed from scikit-learn since version 1.2.
您提到的是对的,`load_boston`函数确实不再直接存在于scikit-learn的最新版本中,比如从1.2及以后的版本。这个变化的原因可能是为了简化库的结构和减少依赖,或者是为了鼓励用户直接访问更广泛的数据源,如`pandas`库中的数据。
如果你想继续使用波士顿房价数据集,可以采取以下几种方式:
1. **通过pandas加载**:可以从UCI Machine Learning Repository或其他数据存储库下载CSV文件,然后使用`pandas`读取:
```python
import pandas as pd
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
column_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
boston_df = pd.read_csv(url, header=None, names=column_names)
```
2. **使用fetch_california_housing**:虽然不是原生的波士顿数据集,但它是相似的加利福尼亚州住房数据,可以在scikit-learn中找到:
```python
from sklearn.datasets import fetch_california_housing
california_housing = fetch_california_housing()
```
3. **利用其他的机器学习库**:像`seaborn`或`statsmodels`库也可能提供类似数据集。
请注意,无论采用哪种方法,你都需要自行处理数据预处理工作,包括编码分类变量、填充缺失值(如果有的话)、标准化等。
阅读全文