用C语言写一段高斯牛顿曲线拟合算法
时间: 2023-12-15 18:59:30 浏览: 92
好的,以下是用C语言实现高斯牛顿曲线拟合算法的代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define MAXN 1000 // 最大数据点数
#define MAX_ITER 100 // 最大迭代次数
#define EPS 1e-7 // 迭代精度限制
double x[MAXN], y[MAXN]; // 数据点
int n; // 数据点数
double func(double a, double b, double c, double x)
{
return a * exp(-1 * (x - b) * (x - b) / (2 * c * c));
}
// 计算Jacobian矩阵,即一阶导数矩阵
void calculateJacobian(double a, double b, double c, double J[][3])
{
int i;
for (i = 0; i < n; i++)
{
double t = exp(-1 * (x[i] - b) * (x[i] - b) / (2 * c * c));
J[i][0] = t;
J[i][1] = a * t * (x[i] - b) / (c * c);
J[i][2] = a * t * (x[i] - b) * (x[i] - b) / (c * c * c);
}
}
// 使用高斯牛顿法拟合
void gaussNewton(double a, double b, double c)
{
int iter = 0;
double residuals[MAXN];
double J[MAXN][3];
double error = 0.0;
while (iter < MAX_ITER)
{
int i, j;
double H[3][3] = {0.0};
double g[3] = {0.0};
for (i = 0; i < n; i++)
{
residuals[i] = y[i] - func(a, b, c, x[i]);
}
calculateJacobian(a, b, c, J);
for (i = 0; i < n; i++)
{
for (j = 0; j < 3; j++)
{
g[j] += J[i][j] * residuals[i];
}
}
for (i = 0; i < n; i++)
{
for (j = 0; j < 3; j++)
{
H[j][j] += J[i][j] * J[i][j];
if (j < 2)
{
H[j][j+1] += J[i][j] * J[i][j+1];
H[j+1][j] = H[j][j+1];
}
}
}
if (fabs(g[0]) < EPS && fabs(g[1]) < EPS && fabs(g[2]) < EPS)
{
printf("Converge in %d iteration(s)\n", iter+1);
break;
}
// 求解线性方程组
double det = H[0][0] * H[1][1] * H[2][2] + H[0][1] * H[1][2] * H[2][0] + H[0][2] * H[1][0] * H[2][1] -
H[0][2] * H[1][1] * H[2][0] - H[0][1] * H[1][0] * H[2][2] - H[0][0] * H[1][2] * H[2][1];
double invH[3][3];
invH[0][0] = (H[1][1] * H[2][2] - H[1][2] * H[2][1]) / det;
invH[0][1] = (H[0][2] * H[2][1] - H[0][1] * H[2][2]) / det;
invH[0][2] = (H[0][1] * H[1][2] - H[0][2] * H[1][1]) / det;
invH[1][0] = (H[1][2] * H[2][0] - H[1][0] * H[2][2]) / det;
invH[1][1] = (H[0][0] * H[2][2] - H[0][2] * H[2][0]) / det;
invH[1][2] = (H[0][2] * H[1][0] - H[0][0] * H[1][2]) / det;
invH[2][0] = (H[1][0] * H[2][1] - H[1][1] * H[2][0]) / det;
invH[2][1] = (H[0][1] * H[2][0] - H[0][0] * H[2][1]) / det;
invH[2][2] = (H[0][0] * H[1][1] - H[0][1] * H[1][0]) / det;
double delta[3] = {0.0};
for (i = 0; i < 3; i++)
{
for (j = 0; j < 3; j++)
{
delta[i] += invH[i][j] * g[j];
}
}
a += delta[0];
b += delta[1];
c += delta[2];
error = 0.0;
for (i = 0; i < n; i++)
{
error += pow(residuals[i], 2);
}
printf("%d: a=%lf b=%lf c=%lf error=%lf\n", iter+1, a, b, c, error);
iter++;
}
}
int main()
{
int i;
printf("请输入数据点数:");
scanf("%d", &n);
printf("请输入数据点:\n");
for (i = 0; i < n; i++)
{
scanf("%lf%lf", &x[i], &y[i]);
}
double a, b, c;
printf("请输入初始参数值:");
scanf("%lf%lf%lf", &a, &b, &c);
gaussNewton(a, b, c);
return 0;
}
```
注意,此代码仅供参考,实际应用中还需要做一些优化和异常处理。
阅读全文