已经得到脑电的特征矩阵和标签向量,有n个样本,3种特征和4个标签,如何将其利用matlab进行cnn分类,给代码
时间: 2023-06-25 13:06:31 浏览: 133
DBO-CNN-SVM蜣螂算法优化卷积神经网络结合支持向量机多特征分类预测(Matlab完整源码和数据)
下面是一个基于Matlab的CNN分类器的示例代码,该代码适用于您的情况:
```matlab
% 加载数据
load('data.mat'); % data.mat包含特征矩阵features和标签向量labels
% 将特征矩阵重塑为图像
features = reshape(features, [size(features,1), 1, size(features,2), size(features,3)]);
% 将标签向量转换为分类器期望的格式
categories = unique(labels);
numCategories = numel(categories);
Y = zeros(numel(labels), numCategories);
for i = 1:numel(categories)
Y(labels == categories(i), i) = 1;
end
% 定义CNN架构
layers = [
imageInputLayer([1 size(features, 3) size(features, 4)])
convolution2dLayer([1 3], 32)
reluLayer
maxPooling2dLayer([1 2], 'Stride', [1 2])
convolution2dLayer([1 3], 64)
reluLayer
maxPooling2dLayer([1 2], 'Stride', [1 2])
fullyConnectedLayer(128)
reluLayer
dropoutLayer(0.5)
fullyConnectedLayer(numCategories)
softmaxLayer
classificationLayer
];
% 定义训练选项
options = trainingOptions('sgdm', ...
'MaxEpochs',10, ...
'MiniBatchSize', 64, ...
'ValidationData',{features(:,:,:,1:100), categorical(labels(1:100))}, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
% 训练CNN分类器
net = trainNetwork(features, categorical(labels), layers, options);
% 对测试数据进行分类并计算准确率
testFeatures = features(:,:,:,101:end);
testLabels = categorical(labels(101:end));
predLabels = classify(net, testFeatures);
accuracy = sum(predLabels == testLabels) / numel(testLabels);
fprintf('测试准确率:%0.2f%%\n', accuracy*100);
```
请注意,这只是一个示例代码,并且您需要根据您的数据和需求进行适当的修改。
阅读全文